
IGUANA1

A PROTECTION AND RESOURCE MANAGER
FOR EMBEDDED SYSTEMS

Gernot Heiser, Ben Leslie
Embedded, Real-Time and Operating Systems Program

National ICT Australia

August 2004

1Name subject to change

– Typeset by FoilTEX –

Iguana

OUTLINE

• Introduction

• Iguana concepts, abstractions and mechanisms

• Iguana API

• Kenge

c© National ICT Australia, 2004 2 Iguana

WHAT IS IGUANA?

• Remember, L4 is a “strict” microkernel:

➜ does not provide any services
➜ does not provide policies (or only very few)
➜ provides mechanisms

• L4 aspires to be generic kernel, suitable for all kinds of systems

• Almost any system requires a set of core services:

➜ process management
➜ memory management
➜ security management

... based on some system-wide policies

• Iguana provides these (or at least more tools for providing them)

• Iguana is designed for use in embedded systems
c© National ICT Australia, 2004 3 Iguana

SAMPLE IGUANA SYSTEM

Compatibility
Mode
Linux
Process

Native
Mode
Linux
Process

Iguana
(System AS)

DriverDriver

Wombat
(Linux ’kernel’)

Hardware

L4Ka::Pistachio

unprivileged

privileged

trusted

untrusted

User ProcessUser ProcessIguana
User
Process

Wombat
(Linux ’kernel’)

MyOS
Server
MyOS

Servers

c© National ICT Australia, 2004 4 Iguana



WHAT DOES IGUANA PROVIDE?

• Convenient way of using L4 primitives

➜ OO-style method invocations instead of explicit IPC calls
➜ IDL compiler for automatic generation of stubs

• Protection framework for access rights management

➜ capability based, flexible
➜ able to model most standard security models

• Virtual memory management

➜ allocation, deallocation, sharing, ...
➜ single-address-space view, supporting FASS on ARM

• Protection-domain (process) management

• Thread management

c© National ICT Australia, 2004 5 Iguana

OUTLINE

• Introduction

• Iguana concepts, abstractions and mechanisms

• Iguana API

• Kenge

c© National ICT Australia, 2004 6 Iguana

IGUANA : BASIC APPROACH

PD
1

PD
2

SAS

• Basic idea: single address space (SAS)

– eases sharing of data

➜ minimises copying
➜ no problems with pointers

• Per-process protection domains

– enforce security policy

➜ any access is subject to access control

– do not interfere with sharing

• SAS layout supports fast-address-space switching on ARM

➜ avoids AS overlaps for non-shared date without use of PID relocation
➜ advantage: 1MB domain granularity instead of 32MB for PID relocation

➜ less internal fragmentation

c© National ICT Australia, 2004 7 Iguana

IGUANA CONCEPTS

• Memory section

➜ unit of VM allocation and protection
➜ can be an encapsulated object with methods and data

• Thread

➜ execution abstraction, as in L4

• Server

➜ thread associated with memory section
➜ invoked through methods with well-defined interfaces

• Protection domain

➜ defines access and resource rights of a thread
➜ corresponds to a process in traditional OS

c© National ICT Australia, 2004 8 Iguana



IGUANA CONCEPTS

• Session

➜ client-server (or peer-to-peer) communication channel
➜ amortises authentication cost over many invocations

• Capability

➜ represents access rights
➜ basis of protection

• Resource token

➜ represents resource usage right
➜ basis of resource management

• External Space

➜ address space extern to Iguana’s SAS
➜ for legacy support and large processes

c© National ICT Australia, 2004 9 Iguana

IGUANA PHILOSOPHY

• Small and lightweight

➜ geared towards embedded systems
➜ allow optimal utilisation of hardware

• Strong yet unintrusive protection

➜ hide protection machinery from most apps
➜ able to emulate most standard protection models

• Support for resource management

➜ in principle, although it isn’t implemented yet!

• Legacy support

➜ designed to run Linux server

c© National ICT Australia, 2004 10 Iguana

IGUANA CONCEPTS

Memory section

Thread

Protection
Domain

Server
Thread

Method

Interface

Invocation
Rights

Session

c© National ICT Australia, 2004 11 Iguana

OUTLINE

• Introduction

• Iguana concepts, abstractions and mechanisms

• Iguana API

➜ Note: Under development, details still changing

• Kenge

c© National ICT Australia, 2004 12 Iguana



OBJECTS

• Six kinds of objects

1. memory sections

2. threads

3. protection domains (PDs)

4. sessions

5. resource tokens (restoks)

➜ not yet implemented, not covered here

6. external spaces

➜ not full Iguana objects
➜ serve as proxies for non-Iguana objects

• Access controlled by capabilities

c© National ICT Australia, 2004 13 Iguana

OBJECTS: COMMONALITIES

• Objects have a unique name — object ID (OID)

➜ OIDs are addresses in Iguana’s SAS
➜ only for memory sections does this address correspond to actual memory

• Objects have methods that can be invoked

– one method that exists for all objects: destroy
– each kind of object has a set of pre-defined methods

• Objects are created by invoking constructor on a PD:

➜ kind cap = pd->new kind(args);

• Methods are grouped into interfaces

– interfaces also have unique IDs (IIDs) that are OID + interface number
– interfaces have capabilities

➜ grant rights to invoke an interface’s methods
– all pre-defined methods belong to separate interfaces

➜ i.e., access is individually protected
c© National ICT Australia, 2004 14 Iguana

CAPABILITIES

• A capability is a token that confers some access right(s)

• Two kinds of capabilities in Iguana:

– master capability

➜ created when an object is created
➜ confers rights on all methods of object
➜ allows creation of further capabilities

– invocation capability

➜ created when an interface is created
➜ confers right to invoke methods of a single interface

• Capabilities are only active if stored in PD’s capability lists

➜ details later

c© National ICT Australia, 2004 15 Iguana

MEMORY SECTIONS

• Memory sections represent virtual memory

– allocation of a certain amount of virtual memory:

mem cap = pd->new mem(size);

• Memory sections are the only objects that support user-defined
methods

➜ others have pre-defined (standard) methods only

• Used to provide encapsulated services:

– service = memory (data) + server (thread) + methods

c© National ICT Australia, 2004 16 Iguana



MEMORY SECTIONS...

• To create a service:

– register a server thread on memory section

base->new server(thread id);
➜ base is the base address (OID) of the memory section

– register interfaces (user-defined methods)

base = iid->new cap();

➜ iid refers to number of new interface

• Registering interfaces supports user-defined methods

– remember: each interface can have one or more methods

➜ interface number only interpreted by server
➜ similarly, the method number is an opcode delivered to the interface

– IIDs and method numbers allocated by system implementor

➜ part of the service’s interface protocol
c© National ICT Australia, 2004 17 Iguana

MEMORY SECTIONS: PSEUDO METHODS

• Read (R), write (W), execute (X) are logically considered methods

– subjects them to same protection mechanisms as other
methods

– no actual methods exist corresponding to those operations

• Further pseudo-method is clist (C)

– needed for manipulating protection domains

– more details later

c© National ICT Australia, 2004 18 Iguana

THREADS

• Iguana threads are essentially L4 threads:

– threads within same PD operated on by plain L4 syscalls

➜ correspond to local L4 threads (i.e., same L4 AS)
➜ ExchangeRegisters, IPC

– direct IPC to non-local threads is not allowed

➜ use method invocations (corresponding to server thread)
➜ presently not enforced by Iguana
➜ requires enhancements to L4 (forthcoming API) to do efficiently
➜ will provide attribute to ensure enforcement (at a cost)

• Certain operations require privileges

– e.g. thread creation and deletion done by privileged L4
ThreadControl() call

• Done by Iguana on invocation of appropriate methods
c© National ICT Australia, 2004 19 Iguana

THREAD OPERATIONS

• Thread creation:

thread cap = pd->new thread(&l4 tid);

– returns two kinds of thread IDs

∗ Iguana thread ID (tid), part of the thread cap

➜ used for protection and other Iguana-specific purposes

∗ L4 thread ID (l4 tid)

➜ used for L4 syscalls

• New thread created inactive

– can be activated by:

➜ L4 syscall ExchangeRegisters() (local threads only)
➜ Iguana method tid->start(ip,sp)

c© National ICT Australia, 2004 20 Iguana



THREAD OPERATIONS...

• Obtain L4 thread ID

➜ l4tid = tid->l4 tid();

• Obtain own thread ID

➜ tid = myself();

• Obtain protection domain of thread

➜ pd = tid->domain();

• Obtain and modify scheduling parameters

➜ tid->schedule info(&info);

c© National ICT Australia, 2004 21 Iguana

SESSIONS

• Sessions reduce authentication overheads of repeated calls

• Prior to invoking methods on a service, must establish session

session = pd->new session(server);

– establishes session between target PD and server

– server is a PD ID

➜ Note: This is likely to change

– Iguana informs the server by invoking its notification method

server->session created(pd);

– Iguana notifies remaining partners if the session is destroyed

pd or server->session destroyed(session);

c© National ICT Australia, 2004 22 Iguana

IGUANA CAPABILITIES

• Iguana capabilities are user-level objects

➜ password capabilities, consisting of OID and password

object ID password

➜ Length of password is configurable (normally ≥ 64 bits)

• Iguana has a list of all valid capabilities

➜ when validating an operation, matches user’s capability against list

• Capabilities are never explicitly presented to Iguana, instead

➜ client stores caps in PD’s capability list (Clist) data structures
➜ client presents object ID to system on method invocation
➜ system traverses client’s Clists for matching capabilities

• Most applications don’t need to know about capabilities

➜ protection system is unintrusive
➜ can emulate wide range of protection models

c© National ICT Australia, 2004 23 Iguana

PROTECTION DOMAINS

Clist Iguana

pd_desc
Clist

protection domain

• Protection domain is defined as a set of capabilities

– Iguana PDs represented by a two-level data structure

➜ PD associated with an array of Clists
➜ Clist is an array of capabilities
➜ Clist is (part of) a memory section

➜ subject to memory protection like any memory section

– PD may or may not
contain its Clists

➜ may or may not be
able to modify itself

➜ can freeze access
rights of a domain

➜ also control over
adding and removing
Clists

c© National ICT Australia, 2004 24 Iguana



PROTECTION DOMAINS

Clist Iguana

pd_desc
Clist

protection domain

• Two-level scheme for capability storage provides flexibility

– can give users full control over their access rights

➜ purely discretionary access control, no system policies

– can force all Clists to be kept by a single server (or set)

➜ allows server to implement almost
arbitrary security policies

➜ essentially a segregated
capability scheme

– hybrid schemes
are possible

c© National ICT Australia, 2004 25 Iguana

PROTECTION DOMAINS

• Presently, access control is disabled

➜ implementation incomplete
➜ will be completed in the near future (code is mostly there)

• Present L4 mechanisms are deficient

– L4 provides redirectors for information flow control

➜ presently not implemented
➜ to be done later this year

– Redirectors are theoretically sufficient, practically inefficient

➜ would require all inter-PD communication to go via Iguana server
➜ doubling of number of IPC operations

– L4 API revision in progress for resolving these issues

➜ Iguana ready to take advantage of this
➜ until then will have a security/performance tradeoff

c© National ICT Australia, 2004 26 Iguana

EXTERNAL SPACES

• External spaces are “raw” L4 address spaces

➜ not part of Iguana SAS

• Provided to deal with restrictions of Iguana model

➜ 32-bit address space may not be large enough to share between all
protection domains

➜ legacy support (e.g. strict fork() semantics) may require separate address
spaces

• External spaces come at a cost

– unable to make full use of fast address-space switching on ARM

– not well integrated with Iguana world

➜ no fine-grained access control provided by Iguana capabilities
➜ not allowed to communicate with any PD other than creator

➜ not even with Iguana — cannot invoke methods
➜ this will be enforced as soon as L4 redirectors are implemented

c© National ICT Australia, 2004 27 Iguana

EXTERNAL SPACES — OPERATIONS

• Creation requires explicit specification of KIP and UTCB address

es = pd->new es (kip, utcb area);

• Thread creation also requires arguments similar to L4

l4tid = es->new thread(pager,scheduler,starter,utcb);

c© National ICT Australia, 2004 28 Iguana



HARDWARE ACCESS

• Device drivers need to access raw hardware features

• Iguana provides a (static) hardware object for this

– physical memory access:

hardware->back mem(adr, p adr, caching);

➜ maps the memory section (adr) to the specified physical address with
specified caching attributes

– interrupt association:

hardware->register interrupt(tid,irq);

➜ registers the specified thread as the handler of the specified interrupt

c© National ICT Australia, 2004 29 Iguana

RESOURCE TOKENS

• Iguana’s resource management mechanism

• Note: presently this only exists conceptually

➜ details of the model still need to be worked out
➜ however, model is based on our experience with a similar model in Mungi

• Basic idea: all resources have a price that must be paid by the
user

• Model provides great flexibility for defining charging details

c© National ICT Australia, 2004 30 Iguana

OUTLINE

• Introduction

• Iguana concepts, abstractions and mechanisms

• Iguana API

• Kenge

c© National ICT Australia, 2004 31 Iguana

KENGE

• Kenge is a set of support libraries for building operating systems

– mostly OS independent

➜ ... but geared towards L4

– implemented in C

• Kenge is not:

– an L4 server (or servers)

– an OS personality

– a part of Iguana

➜ although Iguana’s implementation uses Kenge

c© National ICT Australia, 2004 32 Iguana



KENGE COMPONENTS

libc a C library

➜ C99 compliant
➜ mostly OS independent, but can be specialised for particular OS

➜ I/O, memory allocation, CRT, ...

libdriver device driver library

➜ provides an API against which drivers can be developed
➜ host OS must provide wrappers implementing the required functionality
➜ provides a set of drivers (presently SA1100 UART only)
➜ more on drivers later...

elf library for parsing ELF files

l4e convenience functions around L4

➜ parsing bootinfo
➜ parsing memory descriptors

c© National ICT Australia, 2004 33 Iguana

KENGE COMPONENTS

l4 L4 system call library

➜ from L4Ka::Pistachio distribution
➜ more appropriate place for distribution

Generic data structures:

bit fl: free list based on a bit array

range fl: free list baed on linked list of ranges

circular buffer:

hash:

ll: linked list

c© National ICT Australia, 2004 34 Iguana

DEVICE DRIVER FRAMEWORK

• Generic library to write device drivers to

• Write once, run everywhere

– drivers portable across processor architectures

➜ e.g., IDE disk, NICs

– drivers portable across operating systems

➜ Iguana user-level
➜ Linux user-level and in-kernel

c© National ICT Australia, 2004 35 Iguana

DEVICE DRIVER FRAMEWORK

• Handles driver’s interaction with environment transparently

➜ interrupt model: interrupt invokes function in driver

• Handles allocation of device-specific memory

➜ provision of PCI-consistent memory
➜ pinning
➜ virtual → physical address translation

c© National ICT Australia, 2004 36 Iguana



DEVICE DRIVER FRAMEWORK

• Interaction of driver with environment

– driver to export a certain API

– dependent on device class:

➜ stream device
➜ network device
➜ block device
➜ frame buffer

c© National ICT Australia, 2004 37 Iguana


