Embedded, Real-Time and
Operating Systems Program NATIONAL
http://nicta.com.au/ertos.html ICT AUSTRALIA

LIMITED

lguana User Manual

Gernot Heiser
gernot@nicta.com.au

DRAFT Document Revision: 1.62 Date: 2005/04/04 01:01:32

http://nicta.com.au/ertos.html
http://nicta.com.au
gernot@nicta.com.au

Abstract

This document describes the Iguana embedded operatingnsydt introduces the basic concepts of
Iguana and describes the API in an abstract, OO-style patagis well as providing specific language
bindings and example code.

(© 2004 — 2005 National ICT Australia Ltd. All rights reserved.

Contents

1 Introduction
2 lguana Concepts

3 Iguana API

3.1 Clients, servers,andobjects e e
3.2 Capabilities e e
3.3 Protection Domains e
3.4 Threads e
3.5 Memory sections e e e
3.6 SESSIONS
3.7 Resource TOKENS e
3.8 External Address Spaces e
3.9 Hardware e e
3.10 EXCEPLIONS o o e e
3.11 Synchronisation e
3.12 APISUmMmary e
4 Protection Management
4.1 Capabilities and Protection Domains ciiiin o
4.1.1 Iguanacapabilities e
4.1.2 Capabilitylists e
4.2 Managing Protection Domains e
4.2.1 Manipulating protectiondomains e e
4.2.2 Implementing various protecton models
5 Resource Management
5.1 Resourcecharging e e
5.2 Resource acCounts i i i
53 Income

DRAFT NICTA Confidential

10
12
12
13
13
13
14

15
15
15
16
17
17
18

20
20
21
21

ii DRAFT CONTENTS
5.4 TaXES . . .o 21
5.5 Grantingresource tokens e e 21
5.6 Resource managementmodels e e 22

6 Iguana Services 23
6.1 Memory SECtiON SEIVEI o e 23
6.2 Establishing Sessions e 23
6.3 Naming 24
6.4 TIMer e 24

7 System Startup 25
7.1 MakingaBootimage e 25
7.2 1gUANGTG . . . e e 25
7.3 Booting anlguana System e 26

8 Device Drivers 27

A Kenge Library Summary 29

B Build Instructions 30

C Commented Example 31

D Implementation Restrictions 32
D.1 PDencapsulation e e e 32
D.2 L4globalthread lds e 32
D.3 remove _clist e e 32
D.4 Async communications for Sessions e 32
D.5 Attributes forback _nmensection e 33
D.6 Memorysectionrights e 33
D.7 Domainofathread e 33
D.8 Registerserverreturnvalue e 33
D.9 Unsorted Clists e 33
D.10 Serverside protocol e 33

E C Bindings for Library API 34
E.1 libs/iguana/include/iguanal/types.h File Reference. 34

E.1.1 Define Documentation 35
E.1.2 Typedef Documentation 35
E.2 libs/iguana/include/iguana/memsection.h File Refee 35

NICTA Confidential

CONTENTS DRAFT fii
E.2.1 Define Documentation 36

E.2.2 Function Documentation e 36

E.3 libs/iguanal/include/iguana/pd.h File Reference 37
E.3.1 Function Documentation e . 38

E.4 libs/iguanal/include/iguanal/eas.h File Reference 40
E.4.1 Function Documentation e . 40

E.5 libs/iguana/include/iguana/object.h File Reference. 41
E.5.1 Function Documentation e . 41

E.6 libs/iguana/includef/iguana/session.h File Refezenc 41
E.6.1 Function Documentation e 42

E.7 libs/iguana/include/iguana/thread.h File Reference 43
E.7.1 Function Documentation e 44

F C Bindings for Low-level API 46
G Iguana IDL 47

NICTA Confidential

iv

DRAFT

CONTENTS

NICTA Confidential

Chapter 1

Introduction

Iguana is designed as a base for the provision of operatstgrsy(OS) services on top of the L4 micro-
kernel [?], specifically the Version 4 API] as implemented by L4Ka::Pistachi@][

Furthermore, Iguana is designed for use in embedded sysfdmasmplications of this are:

e Iguana complements, rather than hides, the underlying LY WBrovides services virtually ev-
ery OS environment requires, such as memory and protectammagement, and a device driver
framework;

e the memory and cache footprints of lguana are kept small;
e low-overhead sharing of data is supported:;

e Iguana attempts to provide the best possible performantgpiral embedded processors. In par-
ticular, it supports the separation of protection and tedim that is a feature of some embedded
processors, such as ARM cores, by encouraging a non-opéartapddress-space layout.

The objectives of low-overhead sharing and non-overlappitdress-space layout are supported by al-
lowing separate processes to securely share a single adsprase. This follows the idea ofsingle-
address-space operating systé@ASOS), such as AngeP], Opal [?] or Mungi [?].

Unlike Opal or Mungi, Iguana does not assume that all datdénslystem, including persistent data
(stored on disk or FLASH) resides at an immutable addressénsingle address space. Similar to
Nemesis P], Iguana uses the single address space only for data tresrhg resides in primary memory.
Therefore, there is no guarantee that the address of ddtaovithange once it leaves primary memory.
This is essential to supporting 32-bit architectures.

Another difference to single-address-space operatinpssis that Iguana does not force the single-
address-space view onto applications. Applications hasteoice of creating new address spaces as in
other systems, but can also create processes that shane#ter's address space, although firewalled
into a separat@rotection domain This allows the application designer to trade off perfange (on
some architectures) and simplicity of sharing against theumt of available address space (on 32-bit
architectures) and the ease of porting legacy c@tle |

Iguana’s programming model borrows heavily from Murfgji [out makes a number of simplifications
with respect to Mungi. The similarity goes in fact beyond Ad¢3ues: Iguana and Mungi share a signifi-
cant amount of code. However, while Mungi is designed fobfigrocessors, Iguana supports 32-bit as
well as 64-bit hardware. The main hardware requirementudoning Iguana is aemory-management
unit (MMU), or at least anemory-protection unitMPU). In the following we will refer to an MPU when
only the protection aspect is relevant, and to an MMU wheipsttgor independent virtual-address map-
pings are required.

DRAFT NICTA Confidential 1

2 DRAFT Introduction

The purpose of this document is to explain the use of Iguanbuitding L4-based embedded systems.
It assumes familiarity with L4 and its concepts; a good sewfcsuch information is the L4 User Manual

[?].
Chapter Zorovides an overview of the concepts and basic mechanisonglpd by Iguana.

Chapter Jyives a short description of the Iguana API. There is alsoudision on the client server model
used by Iguana, as well as some explanation of the way cébidre used in the system.

Chapter 4describes all aspects of Iguana’s protection system. dt @levides some examples of how
Iguana can use the capability system to produce certaiegifoh schemes.

Chapter details resource management of the system. It describeadbel used and how each of the
resources are charged according to this model.

Chapter &describes the services provided by Iguana.

Chapter utlines the process the Iguana system goes through dysitens start up. It also gives details
on the role ofry in start up and how to build a boot image.

Appendix Awill describe after appendix A is complete

Appendix Bdetails the applications required to build the Iguana sgs#lso gives instruction on where
to obtain the Iguana sources as well as a set of build ingins:t

Appendix Cshows a commented example of how to use the Iguana systeredte @omething in the
Iguana system which is equivalent to creating a process iniatihsed system.

Appendix Dlists all the current implementation restrictions thatiamposed by the current implementa-
tion of Iguana, L4 or some other system constraint.

Appendix Egives a listing of the C bindings used in Iguana Library API.
Appendix Fwill describe after appendix F is complete

Appendix Gprints out Iguana’s main IDL file.

NICTA Confidential

Chapter 2

Overview of Iguana Concepts

Iguana introduces the following concepts and abstractigmstection domainPD), thread session
memory sectiarcapability, andexternal address spa¢&AS). Their meaning is as follows.

Threads are the unit of execution/scheduling. Iguana threads arthteads and are manipulated di-
rectly with L4 primitives (e.gExchangeRegisterg(as well as primitives defined by Iguana.

Memory sections are the unit of virtual memory allocation and protection. Amory section is a
contiguous range of virtual pages. A memory section can belygle-allocated as a whole, and
is homogeneous with respect to protection: a thread havémaio RWX) access rights to a
particular location in a memory section has exactly the sacaess rights to any other location in
the same memory section. Access to memory sections may letidhetween threads in separate
PDs. Explicit L4 mapping IPC is not permitted between Igupraection domains.

Protection domains provide memory protection between threads executingréiifeprograms. A PD
roughly corresponds to the concept ofask or processin other systems. However, unlike pro-
cesses in systems like Linux, PDs all share the same virtldieas space (thguana address
space(lAS)). A PD contains zero, one or more threads.

Threads in the same PD have full access to each other's mewidty threads in different PDs are
protected from each other, and can access each other’s memgiif permitted by the protection
system (i.e., if they hold the right capabilities).

Threads inside a PD can create other PDs or EASs (if they Ippicbariate capabilities, discussed
below).

A PD is created by calling a creation method on an existing P1is previously existing PD is the
new PD’sowner. The owner of an object is the entity that is charged for tiseueces used by the
object (seeChapter 5.

Communication between PDs is accomplished usigsionsdescribed below.

Capabilities are security tokens that define access rights to objects @nyesection, thread, PD, EAS).
In order to invoke a method on an object, the invoker must laolcappropriate capability. Ca-
pabilities are stored in a user-managed system data steuattere the system locates them as
needed. Hence capability presentationiglicit — methods do not have capability arguments.
As a consequence, most applications never need to deal aptbdities explicitly.

Certain operations are not controlled by capabilities,aratallowed at any time. These include
some L4 primitives on certain objects: local thread mamitoh (ExchangeRegisters()IPC to
local threads (within the same PD or EAS) and IPC betweeneathand its owner.

DRAFT NICTA Confidential 3

4 DRAFT Iguana Concepts

Sessionsare established to allow communication between two priateaomains. Sessions are de-
stroyed either explicitly, or whenever either of the préitet domains is destroyed. When a ses-
sion is destroyed, both participants (or which ever onéestists) are notified by Iguana invoking
a notification method, allowing the PD to clean up any resesiailocated to a session. Currently
the only capability required to create a session betweerptatection domains is the master ca-
pability, i.e., there is no restrictions on who you can ceemtession with at present.

BEGIN: To be revised — Rough draft only!

Restoks are resource tokens; they represent rights to use cersoninaes according to system-defined
policies. Detail later...

Each Iguana object (memory section, thread, PD, EAS) hasvaerPD, which is the PD whose
creation method was invoked to create the new object. Anctbjewner is the entity whose
restoks are charged for the object. Ownership daésnply any access privileges and is therefore
not represented by capabilities.

How are restoks presented?

END: To be revised — Rough draft only

External address spacesare provided for support of legacy applications and apfiioca too big to
share the Ilguana AS. An external address space (EAS) is tinatamnt of a Linux process.

External address spaces operate to a restricted API (nrastliz4 system calls) with little access
to Iguana services. They are as such not well integratedtietdguana system, and are in fact
firewalled off the rest of the system in most respects. Exieaddress spaces may be used, for
example, to support native Linux applications in full bypaompatibility mode.

A thread running in an EAS cannot directly access memory athar EAS or the IAS. In order
to access other memory it needs its owner to map in a regidmed®&S (using L4 mapping IPC).
The server may also map such a region to another EAS in ordiacitibate inter-EAS sharing. An
EAS can be single- or multi-threaded or (initially) be witlt@ny threads.

An EAS cannot present any capabilities to the system. Heheceads running in an EAS are
operating to a restricted system API. They can only perfoperations which are allowed without
capability presentation, such as L4 IPC to the owners. Gdperations (like creating another
EAS) need to be done on their behalf by their owner. For exarimpLinux emulation mode, a
Linux process (running in an EAS) would execute the Liriork() API, which is implemented as
an IPC to a Linux server, which would create an EAS and retuerchild’s PID to the caller.

With proper IPC control it might be possible to provide more access to Iguana services,
however, we are highly doubtful that this would be a good ideaas EASen cannot be cleanly
integrated into the Iguana access control model.

Hardware support is provided in the form of mechanisms for creating mappinigspecific memory
regions, handling DMA, and associating interrupt numbetk treads.

Openissue:There is no exception model defined yet for Iguana. ‘

NICTA Confidential

Chapter 3

lguana API

Here we present the Iguana high-level API and provide exasnpf its use in a somewhat abstract,
language-independent form. C language bindings are pgesbenAppendix E

Information on failure modes of the various functions iscdissed in the binding documentation in
Appendix E

3.1 Clients, servers, and objects

Iguana provides a client-server model of component intemaevhich is implemented using the under-
lying L4 IPC primitive.

On top of client-server invocations, Iguana implementsramanent model, where methods are invoked
on instances. Component object invocations are perfornyed $erver thread registered for a given
memory sectionThe advantage of this model over a thread-per-object nisdeht references to objects
are simply pointers to component instance data. This pesviérformance advantages for SMP systems,
because multiple threads can be used to provide a giverceericcess to these component objects is
mediated through the use of capabilities, discussed below.

3.2 Capabilities

Capabilities define access rights on objects. When an olgjemieated, the caller receivesnaaster
capabilityfor the object. Amastercapability gives the holder maximum rights over the objeatiuding
the right to invoke any method, including methods which hawebeen registered at the time timaster
capability was created.

All objects provideinvoke capabilities for the methods they offer. Memory sectiongetedditional ca-
pabilities which are not associated with method invocatibat with normal memory access operations:
read write and execute(often denoted aR, W and X, respectively). These convey the right to perform
load, store or instruction-fetch operations on the memecyisn. These operations are logically consid-
ered method invocations, but no actual invocation occurdadt, it is not possible to invoke a method
corresponding to these rights. Their whole purpose is tthéerormal memory operations into the same
protection model. Read, write and execute are therefotedgadeudo methods

A further pseudo method i€list (or C). This represents the right to insert a memory section assa Cl
into a protection domain using thiesertor new_pdmethods (see Sectios3and4.1.2for details).

When we talk about invocation rights below we include theugsemethods, except where these are
explicitly excluded.

DRAFT NICTA Confidential 5

6 DRAFT lguana API

Methods are grouped iniaterfaces All methods belonging to the same interface share the sanesa
sibility. Consequently, capabilities actually refer toerfaces rather than methods. The mapping from
methods to interfaces is defined iniaterface definition Interface definitions are expressed in Iguana’s
interface definition languag@DL), discussed in Appendi.

A capability is a data structure which contains (at leastinggrface ID(1ID). The 1ID consists of two
parts: anobject ID and aninterface number Interface number zero is never used, instead a capability
with an interface number of zero is, by definition, a mastgabdity. The IID has the form (size) of a
memory address, but does not refer to an actual memory domcalihe actual breakdown (in terms of
number of bits) between OID and interface number dependseokind of object to which the capability
refers.

There is one method that exist for all objects: the destrutteemoves the object from the system and
renders all its capabilities useless:

obj - >del et e();

Each kind of object has its own set of standard methods whielaailable for all objects of that partic-
ular kind. These are discussed below.

Memory sections may, in addition to the standard methodiade for all memory sections, have user-
defined methods. A user-defined method is available onlynparticular memory section for which it
has been registered with the system.

No matter whether a method is user-defined, a standard methihe deletemethod available for all
objects, it can only be invoked by a thread which holds an@mate capability.

3.3 Protection Domains

Iguana’s protection system is a capability-based systensuth a system a protection domain is said
to be the union of all the capabilities held by the protectimmain. In order to gain access to some of
Iguana’s resources, a protection domain must have theatarapability to access the required service.
Iguana removes the need to specify the capability when stiggea system service meaning that all the
security checks are done implicitly by the Iguana system.

Since protection domains are capabilities it is throughabdjies that we can manipulate the protection
domains. A user can either delete or add certain capabitiigrhole Clists. Or if a finer detail is required
you can then use thedd_clist andremove _clistmethods.

Explicit L4 IPC is not to be used for communication betweersRibis is to enforce some PD encapsu-
lation and allow communication through measureable ssuréer resource management), only within
a PD or between an external address space and its ownesdsden 3.3 Iguana method invocation,
sessions and shared memory sections are the only legal coicatian mechanisms between PDs.

Implementation note: This restriction is presently not enforced. RefefStection D.1 ‘

create_pdcreates a new PD owned by the PD on which this method is invoked
pd_cap = pd->create_pd(flags);

The resources of the new PD are charged againsbwh®r The owner has no control over the
created PD, unless it holds a capability to it. The new PD s¢edbe given a Clist in order to be
able to execute any threads.

BEGIN: To be revised — Rough draft only!

NICTA Confidential

3.4 Threads DRAFT 7

If the owner’s restok is destroyed (e.g. because the owself iis destroyed) the owned PD is
destroyed as well. This implies that all PDs owned by therdgetl PD are also destroyed.

Will need restok arg to create_pd

END: To be revised — Rough draft only|

Implementation note: Theflagsargument is used to specify whether IPC restrictiong are
enforced on this PD. It is not currently implemented. Refe®é¢ction D.1

delete deletes the PD.
pd- >del et e() ;

All resources allocated to the PD are released, includinogetby owned PDs are implicitly de-
stroyed by this operation.

add_clist inserts a new Clist into the PD:
slot = pd->add_clist(clist);

The clist argument is a memory pointer, the caller must hold a v@lidapability to the corre-
sponding memory section. On success this will return thigpslsition where the Clist was stored.

Implementation note: The counterpoint t@dd_clist remove_clistis not currently implet
mented. Refer t&ection D.3

set_callbackassociates a callback buffer with this protection domaailacks, which are implemented
as circular buffers, allow for asynchronous communicat@ients place their request in the buffer
and it is handled when the server next checks the bufferewthé client continues to operate.

pd- >set cal | back(cal | back_buffer);
release_clistremoves the Clist from the specified slot in the PD.

pd->rel ease_clist(clist, pos);

The Iguana protection model is explained in more depiBitiapter 4

3.4 Threads

Iguana threads are primarily L4 threads and can be manguulay regular L4 system calls, such as
ExchangeRegisterdHowever, certain operations on threads are privileged.4inand need to be per-
formed by Iguana. This makes those operations subject emkgs protection model.

A complication is that Iguana’s protection model requires tise of thread IDs that are different from
L4's thread ID. Methods exist for mapping between the two, IBxsd each method expects either an
Iguana or an L4 TID.

Iguana provides the following methods for thread maniporat

create_threactreates a new thread in a specified PD. This returns a cdpabilihe thread object, as
well as an L4 global thread ID (L4TID):

thread cap = pd->create_thread([priority], & 4tid);

NICTA Confidential

8 DRAFT lguana API

Creating threads in an EAS is discusse&éttion 3.8

The thread is createdactive In the case of a local thread (created in the caller’s owniPE&jn

be activated using L4'€xchangeRegisters@ystem call. If created in a different PD it can also
be activated usingxchangeRegisters(provided there is another thread in that PD which is told
about the L4 thread ID of the new thread. Obviously this isasgible if the new thread is the first
one in the PD.

The thread priority is an optional argument, representittyead priority between 1 (lowest) and
255 (highest). If it is not specified, the default priorityXd0 is used.

Implementation note: Iguana is not heavily reliant on L4 global thread Ids. Refer t
Section D.2

Start starts (activates) an inactive thread. This is needed fiivading threads in other PDs, as local
threads can be activated via direct L4 system calls (but #sthod can be used on local threads as
well).

tid->start(ip, sp);

The caller supplies the start addregs) @nd initial stack pointerdqp) for the thread. The caller
does not need any rights to the memory sections contaipiagdsp but the starting thread’s PD
needs themX for the memory segment pointed to myand RW for the memory segment pointed
to by sp). This method can only be called on inactive threads.

l4id is used to obtain the (global) LATID of a thread, for passimg4 syscalls such as ExchangeRegis-
ters().

l4tid = thread->l4id();

id is the inverse of I4id and returns the Iguana thread referghen an L4 global thread ID.
threadid = | 4tid->id();

domain returns the PD of a thread.

pd = t hread->donai n();

Implementation note: Currently not implemented. Refer &ection D.7

myself is a static method that returns the caller’s (Iguana) TID.
tid = nyself();
delete deletes an Iguana thread.

t hread- >del et e() ;

3.5 Memory sections

Memory sections represent virtual memory for data anductitn storage. Furthermore, memory sec-
tions can have application-defined methods implementibigrary functionality. This is the basic mech-
anism for the provision of services in lguana: In order to/ite a service, a memory section is associated
with a server thread and a set of methods which are used tkdritie service. Method invocations result
in a communication with the server thread.

The object ID of a memory segment is the number of its first p&msequently, the 1ID for interface
number zero (representing tmeastercapability) is the first address of the memory section. This i
referred to as the memory sectiobvase address

NICTA Confidential

3.5 Memory sections DRAFT 9

The standard methods available for all memory sectionssfellaws.

create_memsectioiis used to allocate a new memory section of a specified sizbeirctrrent PD.
The method returns thmastercapability for the new memory section (which is the objebtse
address).

mensecti on_cap = pd->create_mensection(size, &base);
delete removes the memory section and renders all its capabilisetess.
mensecti on->del ete();

register_serveregisters a server thread for a memory section, replaciggenver that may have been
registered for the memory section previously. Methods mdy be invoked if a server has been
registered.

For discussion on how the memory section server dispatcledsooh invocations se®ection 6.1

Implementation note: The return value is undefined. ReferSection D.8

menmsect i on- >r egi st er_server (server);

lookup returns the memsection and server thread associated withject. This is required for session
creation.

mensecti on = section->| ookup(object, &server);
base returns the base address of a given memory section.
baseptr = section->base();

read write, execute are pseudo-methods which are not directly invocable but exikst for their capa-
bilities. Load, store, or instruction fetch requiread write or executecapability on the corre-
sponding memory section.

| BEGIN: To be revised — Rough draft only!

new_capcreates a capability for a specified interface number of gactb The caller must hold the
mastercapability to the memory section.

cap = iid->new cap();

Note that this may be used to create several diffemardke capabilities for the same interface,
including read write, or executecapabilities. It can also be used to create additionakter
capabilities, although this probably doesn’'t make a lotenfse.

Capabilities for method invocation can be created whetherod a server is registered for the
memory section. Invocation of a method can only work if a sehas been registered.

validate checks whether a capability list granitsoke right to a certain interface.
if (cap_list->validate(iid)) { ... }
What sort of object is acap_list? How does it get thevalidate method?

pin_range allows to pin a memory buffer to enable DMA-based I/0. Theyeais specified by atartand
endaddress. The range must be wholly contained within a singlmaony section, and the caller
must holdreadand write capability to that memory section. The method returns aexegather
list, i.e. a list of physical frames that are to be used by #héa driver.

NICTA Confidential

10 DRAFT lguana API

sg_list = base_adr->pin_range(fromto);
Requires ??7? capability on the memory segment plus ??? rests.
unpin_rangeremoves a previously established pinning.
base_adr->unpi n_range(fromto);

FIXME: Memory pinning / unpinning not implemented yet.

| END: To be revised — Rough draft only|

| BEGIN: To be revised — Rough draft only! |

This model obviously requires a way for a callee to discovhichy thread implements any particular
object, and a way for a server thread to be associated withtigydar object. When creating an object
the server registers itself by calling theemsection_register_servarethod on the memsection in which
an object resides. As an example the timer server providesado individual timer objects. On startup
it registers itself as the server for the memsection it usedllocate individual timer objects. On the
client side, when given a capability to some object it wilsficall session _creatavhich will return the
server thread to call. (On a security-enhanced L4 kerneillidgo call the underlying L4 calls to allow
the callee thread to perform IPC with the server thread.)

The described model works well when dealing with callingmoeton individual instances, for example a
specific protection domain object, or timer object, howearall functionality involves calling methods
on instances. Some servers need to provide some static asetivbich are not associated with any
particular instance. The most common example is a methaditosereate a new instance. For example
thetimer_server_createethod creates new timer objects. In these cases it becesgsléar as to how
the methods fit into the model. For these cases we treat thdedoserver program as an instance in its
own right. The current implementation treats the loaded@im image as the instance for what would
otherwise be static methods. On startup the program loadeiguana/init/src/init.c:start_servej(ill
register the started thread as the server. To provide thigyabi share text between two copies of the
same server, the address used to refer to the server isahtabfsts data section.

| END: To be revised — Rough draft only

3.6 Sessions

A session represents a communication channel betweema aligect and server thread.
There is an implicit session between all non EAS threads lamdbiuana server thread.

Before invoking methods on an object a session must be ettatll A session is set up by calling the
session_createethod on the object we want to create the session with. &fiethe iguana server will
then run some security checks on the client and server artt that the client thread has the right to call
the server. The security checks involve checking that tleatchas the correct capability to communicate
with the server.

BEGIN: To be revised — Rough draft only!

When set up, the session allows synchronous communicatitmebn the client and server. Calling
the add_async()method requires a pair of ring buffers (one for calls, oner&urns), which allows
the client and server to communicate asynchronously, ¢uitiadding buffering to the kernel). When
the add_async(Imethod is called, the Iguana server makes another asynd tgptae server thread to
inform it of the new async buffer that has been set up.

NICTA Confidential

3.6 Sessions DRAFT 11

This setup allows a client to set up an async session withversetithout ever having to trust the server.
(Compatred to, for example, using a synchronous call to the seer to set up the shared buffer,
which would need a blocking call to the server.)

| END: To be revised — Rough draft only|

When a session is deleted the threads can no longer comrtinica

Implementation note: Iguana supports asynchronous notifications between sss&iot the AP
is currently subject to change and not documented. Refgetbion D.4

Implementation note: Presently Iguana doemt enforce the restriction that all inter-PD commu-
nication must be via sessions rather than raw L4 IPC. Ref8etwion D.1

create_sessiofis a method on PD objects which creates a new session ownéw R
session_cap = pd->create_session(object, clist, server_thread);

The new session is established betweendbject and theserver_thread The resources of the
new session are charged againstabgect On creation asession_createdall will be invoked on
objectandserver_thread

Theclist parameter is optional. If omitted, the session is create¢d an empty clist.
delete deletes an existing session.
sessi on->del ete();

The session is deleted and both participants are informéuknihe session is deleted the two PDs
involved can no longer communicate.

BEGIN: To be revised — Rough draft only!

provide_accessadds the capability to call the supplied object with the #jmt interface ID to the
session clist.

sessi on->provi de_access(obj ect, interface);
session_createds called when a session is established.
sessi on_creat ed(pd);

Called by iguana when a new session is established. Thissttte PD to know that it is commu-
nicating with a new client and establish any resources redui

FIXME: session_createdoesn’t appear to be implemented
session_deleted.. FIXME!
add_async_buffer... FIXME!
buffer_added FIXME!
new_sessionFIXME!
add_asyncadds asynchronous communication buffers to the session.

sessi on->add_async(cal | _buf, return_buf);

END: To be revised — Rough draft only|

NICTA Confidential

12 DRAFT lguana API

3.7 Resource Tokens

| BEGIN: To be revised — Rough draft only!

The Iguana resource management model is explained in mptk oeChapter 5 Here we just provide

a brief description of the API. This is unlikely to make a Idtsense at first reading, but is provided
here for completeness. The reader is advised to skip detaNéded in this section and return here after
readingChapter 5

set_restoksets the target PD’s restoks, taking them from a specified Ri3toks:
target pd->set _restok(frompd, resspec);

Transfers fixed resource entitlements and establishesin@sentitiement rates itarget_pdas
specified byresspecThe resources are taken from the restok&ah_pd(or refunded there if the
new allocation is less than the previous value).

get_restokobtains the present restok balances and rates of a PD:

pd- >get rest ok(& esspec);

Restoks have a mask indicating type of resource they candikfag presently thread, PD, EAS, VM,
PM, time. Combination of refundable value and rent. Cantersab-restok, delegates part of refundable
value/income stream, when destroyed refund value and staprie. When destroyed, charged objects
are destroyed. Implicitly destroyed when owning PD is ag&td. Initially implement pure quota system
(only refundable charges, no income).

Needs clarification and some more thinking.
| END: To be revised — Rough draft only|

3.8 External Address Spaces

External address spaces can be created with a PD (not an EAR® awner. External address spaces
have their own thread-creation API, because they repreaent.4 address spaces. New EAS threads
can, however, be manipulated using the regular Iguanadt@ after creation.

An EAS cannot invoke Iguana methods, but must request ssrfiom its owner PD via L4 IPC. In
particular, the owner is responsible for populating themxl address space using L4 mapping IPC.
create_eagreates a new EAS owned by the PD.

eas_cap = pd->create_eas(kip, utch);

The kip andutcb parameters specify the location of the k&rnel info pageanduser-level thread
control blockin the new address space.

create_threactreates a new thread in an EAS:
thread _cap = eas->create_thread(pager, schedul er, utch);

Herepagerandschedulemre the LATIDs of the page fault handler and scheduler ofélethread
andutcbis the location of the new thread'’s user-level TCB.

delete deletes the EAS.

NICTA Confidential

3.9 Hardware DRAFT 13

eas- >del ete();

All threads associated with the EAS are deleted, followethByEAS itself.

3.9 Hardware

The statichardwareobject is used for dealing with properties of physical haady The methods that
can be called on this object are as follows.

back_memsectiormaps specific physical memory to a virtual memory sectioris used by device
drivers to map device memory which can then be used for memapyped 1/O via the memory
segment.

har dwar e- >back_nensecti on(nensecti on, p_addr, attributes);

memsectionis the memory object to back, addra (suitably aligned) physical memory address,
andattributesspecifies any specific attributes for this backing, such esechehaviour. On archi-
tectures that do not support memory-mapped fQaddrrefers to an 1/0O-space address.

Implementation note: The attributesflag may in the future contain architecture-spedific
flags, but currently none is implemented. RefeStxtion D.5

Implementation note: Currently there is no enforcement of access controls fardpiera;
tion. Refer toSection D.6

register_interruptregisters a handler thread, identified by an L4 TID, to rez@ispecific interrupt.

har dwar e- >regi ster _interrupt(l4tid, irq);

3.10 Exceptions

‘ Open issue:lguana’s exception model is not defined.

3.11 Synchronisation

Iguana does not provide a synchronisation service. A seanagerver for concurrency control on long
critical sections can be implemented separately if require

The approach Iguana uses for short critical sections isifyr@t preemption system where by the user
will turn the notify on before the critical section and tutroff after the critical section. What this means
is that if during the critical section execution it gets prgted, the system will then jump back to the
start of the critical section after the new critical secttmmpletes.

Not i f yOnPr eenpti on();

[* critical section */

Di sabl ePreenptionNotify();

if (PrenmptionPending()) {
Yield();

}

Such a short critical section can be used to obtain or releések or to change a thread priority.

NICTA Confidential

14 DRAFT lguana API
3.12 API Summary

Object Method Arguments Return value Section
pd— create_memsectiosize, *basg — memsection_cap | 3.5
pd—-create _pd (flags) — pd_cap 3.3
pd—create_thread ([priority], *14tid) — thread _cap 3.4
pd—create_eas (kip, utcb) — eas_cap 3.8
pd—create_session (object, clist, server_thredd- session_cap 3.6
pd—set_callback (callback_buffey 3.3
pd—add_clist (clist) 3.3
pd—delete 0 3.3
sessior-provide _access (object, interface — bool 3.6
session-delete 0 3.6
adr—register_server (serve) — int 3.5
adr—lookup (object, &servey — memsection_ref t 3.5
adr—base 0 — void * 3.5
tid— start (ip, sp 3.4
tid— 14id 0 — l4tid 3.4
tid—id 0 — thread_ref _t 3.4
tid—domain 0 — pd 34
tid— delete 0 3.4
eas—create_thread (pager, scheduler, utgb +— thread_cap 3.8
eas—delete 0 3.8
hardware—back _memsection(memsection, p_addr, attribudes 3.9
hardware-register_interrupt (l4tid, interrup) 3.9
—myself 0 — tid 3.4

Memory sections also have thead write, executeandclist pseudo methods. In the above table we use

the following identifiers:

{pd,memsection,thread,eas,session} .cappability referring to an object of the respective type;

pd, adr, tid, eas PD, Iguana thread, EAS reference (object ID part of the algjepability).

Should an arbitrary 11D of the object be allowed too? Probably yes. In fact, for memory

sections we want to allow an arbitrary address within.

Restoks need further consideration.

hardware the static object representing operations on hardware;

priority, attributes interrupt p_adr flags interface integers;

kip, utch, ip, sp base virtual memory addresses;

callback buffer memory section reference;

object object reference;

l4tid, pager scheduler L4 thread IDs;

server_thread Iguana thread IDs;

clist. special data structures.

NICTA Confidential

Chapter 4

Protection Management

Iguana features a general and flexible capability-basetbgtion system which is able to emulate a
number of standard access-control policies.

4.1 Capabilities and Protection Domains

A capability [?] is an unforgeable token that pgima facieevidence of some right the holder possesses.

In a capability system a thread’s protection domain (ifee,qum of its access rights) is equivalent to a
set of capabilities — the same is true for Iguana. What djsighes different capability systems from
each other are the representation of individual capadsliéind the representation of protection domains
(i.e., the precise way in which a protection domain is defiaed set of capabilities).

Capabilities can be stored as kernel-owned and -maintasapdbility lists (leading to aegregated
capability system) or as user data. In the latter case thebda@s must be protected from forgery. This
can either be done by hardware meaagdedcapabilities) or sparsitysparsecapabilities). Iguana uses
the latter approach, as explainedSaction 4.1.1

In a capability system an appropriate capability must begted to the system whenever a system
service is obtained. This presentation canelgplicit, meaning the capability (or a reference to it) is
passed as an explicit argument to a method invocation. Thenative isimplicit presentation of ca-
pabilities, which separates protection from function asmthus less intrusive (similar to systems using
protection based oaccess-control lis)s Iguana uses implicit presentation via two-level datadtires
called Clists. These are explainedSection 4.1.2

4.1.1 Iguana capabilities

Iguana capabilities are user-level objects, in the seraddtiby are data structures which can be read and
written like any other data by unprivileged threads.

As explained inSection 3.2 an Iguana capability is a data structure which containsngrface ID,
which itself is composed of an object ID and an interface nemrtbection 3.2lid not explain what other
information a capability contains. This is because for mmsposes the remainder of a capability is
opaque data.

Iguana capabilities are implementedgassword capabilitie$?], meaning that the balance of the ca-
pability’s data is simply a random bit-string — a passwordiepassword protects a capability from
forgery, as, in order to manufacture a valid capability, aeeds the correct password that matches the
[ID.

DRAFT NICTA Confidential 15

16 DRAFT Protection Management

Iguana maintains a system-wide list of valid capabilitibenever a new capability is created (via one
of the constructoreew_memnew_threadnew_pd new_ea®r new_cap, Iguana enters itin its internal
data structures before returning it to the caller. Whenfyieg a capability, Iguana looks for a match
with the internal data structures; only if it is found thesethie capability considered valid. The size of
the password is a system generation parameter so it can piedda the system'’s security requirements.

Since capabilities are regular data, they can be passeddfi@ely. Any threads which can communicate
can pass capabilities to each others. In this way, it is plesgd pass access rights to data between threads
without explicit system interaction.

However, whether a thread which receives a capability cakeraay use of it is a different matter, which
has to do with the way protection domains are defined in Igudacontrolling the data structures
which define protection domains, it is possible to limit thegagation of access rights even between
communicating threads. How this is achieved is explaingtiérfollowing sections.

4.1.2 Capalbility lists

As mentioned above, Iguana’s password capabilities aredsto user-level capability data structures
called Clists They are implicitly presented to the system on a methodcation, meaning that the
system knows the location of the caller’s Clists and perfantookup on them as required.

User-level capabilities are convenient to use, but oftekenitampossible to enforce system-wide access-
control policies. In order to to enable enforcement of sualicies, Iguana’s Clists contain a level of
indirection which allows the interposition of security @yl managers. This is explained in more detail
in Section 4.2.2

In order to provide this level of indirection, Iguana’s chjiity storage uses a two-level data structure.
The system represents the protection information of a ptiotredomain as an array @flist capabilities
Each of these is a capability (conferring t@eight) to a memory section which is interpreted as a Clist
(a system-defined data format). A new protection domaingated empty, i.e., with no Clist&IXME!

The creator (or anyone who obtains the appropriate capiabifrom the creator) then uses system calls
to add Clists to the new PD. The system then validates thatdher possesses at least f@eaight on
each of these Clists before inserting them into its intereptesentation of the PD.

GN lguana

pd_desc

protection domain

Figure 4.1: Clists defining a protection domain

This two-level scheme is depicted Kigure 4.1 Iguana’s data structures describing a PD contain an
array of Clist pointers, the entries of which are cakdaots Each of the Clists referenced by the pointers
in those slots contains a set of capabilities, correspgnttiraccess rights for a set of objects; such a set

NICTA Confidential

4.2 Managing Protection Domains DRAFT 17

comprises a sub-PD. The union of the sub-PDs defined by tlstsGlefines the protection domain (at
least as far as access rights go).

When validating a method invocation, Iguana searches the @li3ts for a capability that matches one
of the valid capabilities for the method. Validations arelead for efficiency.

The method of searching within a Clists depends on the speéifist format. Two for-
mats are supported: aorted (by ascending I1ID) and arunsorted one. Binary search is
used on the former, a linear scan on the latter. The searchermiriated when a ca-
pability for the invoked interface is found. Any invalid caglities encountered are qui-
etly ignored. It is obvious that Clists should be kept in edrtformat whenever possible.
‘ Implementation note: Presently only the unsorted format is implemented. Ref&etction D.9

4.2 Managing Protection Domains

The specific representation of protection domains useduarig has a number of interesting properties:

1. capabilities are user-level objects. This means theybeapassed around freely without system
intervention;

2. capability presentation is implicit: no method invooatitakes an explicit capability argument.
This makes the protection system unintrusive;

3. aprotection domain may or may not hold the capabilitieheéoClists which define it. This makes
it possible to set up PDs with access to certain objects,owitlgiving the PD any access to the
capabilities to those objects. Such PD is not able to prdpdtsaccess rights to others.

For example, irFigure 4.1the first Clist is outside the protection domain it helps térde Hence the
PD has no access to the capabilities for the objects in thesmonding sub-PD. The capabilities of
the second sub-PD are accessible to the PD (assuming the gigimted to the second Clist by the first
sub-PD includer).

Together these properties provide a great amount of fléxiliil tailoring protection domains and con-
trolling their interaction. As will be discussed in more @éin Section 4.2.2a number of standard
security models and policies can be implemented using thisrae.

4.2.1 Manipulating protection domains

According to what was said above, there are two ways of méatipg protection domains: manipulating
the Clists objects (e.g. adding or removing individual dalgges to a Clist) or manipulating the Clist

array (inserting or removing whole Clists). The former riegslW access to the Clist objects, while the
latter requires invocation rights to tlald_clistandremove_ clistmethods.

Manipulating Clists provides fine-grained control over PBsthread which creates a new object will
typically add the new object’s capability into one if its &8 in order to be able to invoke methods on that
object. It may also pass the capability (or specific intexfaapabilities) to threads in other protection
domains, which will then insert it into one of their Clistshi$ is the basic way of sharing objects in
Iguana.

Adding or removing Clists performs coarse-grain contra@ravDs. It is typically used for grouping and
sharing capabilities for related objects. This is akin timgigroup access rights in Unix systems.

However, Clists can also be used for sharing objects withaatling out actual obje‘ct capabilities. By
putting a set of capabilities into a separate Clist, and imgndut aC capability to that Clist, other PDs
can use the objects without being able to access (and distyithe actual object capabilities themselves.

NICTA Confidential

18 DRAFT Protection Management

Implementation note: Since the current L4 kernel does not have an efficient IPCrabnitech-
anism we use a server side validation protocol to make sateatblient has the correct Clists for
the operation they want to perform. ReferSection D.10

4.2.2 Implementing various protection models

The indirection of Iguana’s Clist structure can be used tofioe untrusted code. In order to run an
untrusted program securely, the caller sets up a protedtiomain which contains no Clist capabilities.
The caller also ensures that the untrusted PD does not oditaapabilities, except for buffers used for
communication with the caller. The caller does not hi¥idapabilities to those buffers to any other PDs.
If the untrusted code is then executed in the untrusted P&anihot leak any data, even if it allocates
new memory sections or its code contains embeddéedapabilities. An example of this is shown in

Figure 4.2
‘Clist\ Iguana

IR PD_0

Figure 4.2: Encapsulation of a protection domaib (1). Shaded boxes represent read-only or execute-
only objects. If no third PD has a capability B®_1's only writable object, the®D_1 cannot pass data

to anyone buPD_0

Alternatively, the hierarchy can be used to simulate a gggeel capability model. In this case, one (ore
more) protection server “owns” all Clists (in the sense tmdy it holds Clist capabilities). These servers
also must be the sole holders of PD-creation rights, sorathite _pdoperations must be performed by

the protection server on behalf of a client.

In such a scenario, the protection server is the sole atighwetiich decides what access rights any PD
has, and how access rights can be transferred. The servanpment standard models of mandatory
access control, such as Bell-LaPaduhdr Chinese Wall P]. Figure 4.3shows an example.

Can this do DTE/RBAC? DTE = domain type enforcement RBAC = roke based access control

NICTA Confidential

4.2 Managing Protection Domains DRAFT 19

Protection Server
O - Iguana
- / -

-

Figure 4.3: Capability segregation using a protection esen¥n this example, the server enforces an
isolation policy between the red and blue protection domain

NICTA Confidential

Chapter 5

Resource Management

BEGIN: To be revised — Rough draft only! |

None of this is presently implemented.

Iguana manages resources using an economic mefdelhe present model is a generalisation of the
bank accountmodel used by Mungi for charging for disk usad®. [lguana’s resource management
model combines Mungi’s rent model with the ability to defiiragle quota.

The basic idea is that each resource has bothlae and arate; either or both of which may be zero.
The value is the amount of currency that must be paid by tresfrctive) owner who wants to allocate
the resource. The rate is the amount that must be paid peofutiihe what time? during which the
resource is held. The resource’s value is refunded to theeowhen the resource is deallocated, while
the rate is non-refundable.

5.1 Resource charging

The current value and rate of each resource is determingéehsygide by thaesource managemhich
is an lguana server. Each resource’s value and rate is shebgsource manager independent of other
resources. Presently the following resources exist:

e virtual memory

e physical memory (??7?)
e protection domains

e external address spaces
e sessions

e threads

e processor time.

The resource manager may choose to have a zero rate and anooraelie for a particular resource; this
corresponds to paying a purchase price at allocation whictfiinded at deallocation. Alternatively, the
resource manager can choose to set the value of a resous® tad the rate non-zero; this corresponds
to paying (non-refundable) rent for the resource. If the®alnd rate are both non-zero, then the resource
requires both a purchase price and rent payments. Of cahiesegsource manager can choose to set a

20 NICTA Confidential

5.2 Resource accounts DRAFT 21

resource’s value and rate both to zero, which turns off memegt of that resource, limiting its use only
by system-wide availability.

The resource manager may choose to keep a resource’s valuatarconstant or may vary them over
time. For example, the value or rate of a resource may bedeetkin response to high utilisation, in
order to encourage clients to return unneeded resourcesredource is deallocated, itarrent value

is refunded to the owner, not the original value at the timallfcation. FIXME: This could lead to
hoarding/speculation, we may need to rethink this.

The rate is charged to clients periodically in advance. Atttme a resource is allocated, the value and
rate for the initial charging period is collected from the&nt’s resource tokens. Allocation fails if the
client has insufficient restoks.

What happens when there are insufficient tokens for paying forates? Owner blocked or killed?
Or some resources deallocated? Which? Do we need a priorigd victim list?

Rent collection may happen prematurely (when we have a resoce shortage). In this case excess
rent is refunded prior to charging the next rent at the (presumably) higher rate.

Need an API for communicating with resource manager. At leas need to find out present values,
rates and charging period.

5.2 Resource accounts

In order to pay for resource use, each protection domain st af resource accountsone for each
resource type. Like the corresponding resource, each atbas a value as well as a rate. Whenever a
PD allocates some resource, the resource’s value is stegtriiom the value of the (prospective) owner’s
resource account, while the resource’s rate is subtracbedthe ...

‘ Open issue:Are restoks first class objects or are they only attributeRBé$?. ‘

5.3 Income
Restoks are drained by rent, need income to offset. Paymastdeposits ratex time periodically, as

in [7].

5.4 Taxes

Rates must accumulate into capital, as otherwise rates betia exactly like values and are redun-
dant. This implies that we also need taxation, as in [?].

Well-known taxation formula and public taxation rate.

5.5 Granting resource tokens

Can create new restoks. They get a value by transfer from an éting restok, they get a rate by
drawing on an existing restok (either can be zero, of course)If restok is destroyed, remaining
value reverts to source, rate ceases to draw on source.

NICTA Confidential

22 DRAFT Resource Management

5.6 Resource management models

There is a top-level restok which is the source of all restokates and values. Presumably held by the
resource manager. Resource manager can decide on the poliby setting value/rate of resources
and the restoks it hands out. Zero rates on all restoks of a paicular type implements a simple

guota model. Zero value but non-zero rates and 100% taxatiorcorresponds to a proportional
share model.

We need to investigate how standard models for each resourggpe fits into this.

END: To be revised — Rough draft only

NICTA Confidential

Chapter 6

lguana Services

An Iguana service is composed of one or more threads whichderdunctionality to client threads via
L4 IPC. Iguana services are optional, though some may depethers. For example, several services
register themselves with the naming service, which pra/alflat namespace and is discussed in more
detail below.

Services typically exist to arbitrate access to a sharezlires, such as a device or a haming pool, or to
provide functions which would otherwise require additiaihaeads in the client, such as a timer service.
These requirements distinguish services from regulaatjbcode.

Services are specified as part of a bootimage target. Use twtimage target in
confi gs/i guana. sconf if you want to compile a different set of services to the orgsaha in-
cludes by default.

6.1 Memory section server

Like other services in the Iguana system the memory secgoresuses L4 IPC to talk to the server.
Unlike other services however, the memory section servieuiisin to the iguana system as an integral
part. Meaning that the memory section server is not builtl @aced in the bootimage image) in to the
system at compile time, but built into the Iguana imagefitsel

6.2 Establishing Sessions

Sessions are lguana’s way to regulate communication batwextection domains. A session can also
be used to enforce PD encapsulation. When creating a sdgsimna will create a Clist for that session.

The Iguana system may then check to see if a session is alseadp with the server, if it is the session
creation protocol will halt. If no existing session is set tien the Iguana server is contacted.

It is the job of the Iguana server to ensure that the sessialiggbetween the two communicating PD'’s.
Meaning that it will check the capabilities of the initiatamd see whether it has the capability to establish
as session with the receiving PD. If all the security checkspassed then the Iguana server will create
a master capability for the session.

the process of establishing the actual session betweewthesmmunicating PD’s is then quite simple.
A session object is created with no callback buffers (asetltes) be added if needed at a later time).
Then both the client and server PD session lists are updateally a Clist gets added to the server PD.

DRAFT NICTA Confidential 23

24 DRAFT Iguana Services

6.3 Naming

The naming server is similar to other services where by it igelPC to communicate with the server.
Like the others it uses the IDL to hide all of the complicated level code required to communicate
with the naming server thread.

Iguana’s naming service is used by many other servicesdhmu the system. This means that for most
system configurations the naming service will be compilet ithe Iguana system.

Naming methods which are not involved in the client servectmaeism of the service are stated below

create_name_nodereates a name node in the naming information list.
do_notify explicitly sends an L4 IPC to the thread to notify.

notify_list iterates the notify list if there is a match will notify the tmhing thread.

6.4 Timer

One of Iguana’s services it offers is the timer service. Beivice can be used to receive incoming timer
requests from devices. Iguana’s timer service offers tliéyato insert, delete, allocate and deallocate
items in the timer queue. Like all services the timer seniéimwll waiting for an incoming request. An
incoming request can be from an interrupt, a device or theesyslock. Upon receiving the request the
server will jump to the corresponding function in relatiansthat was the calling method.

When a new timer gets created, the system will insert it irh&ibactive timer list. What is returned
from this is a capability to the timer event. Currently thateyn only returns a master capability but in
the future, it will be possible to add any type of access tatgly created timer item.

The timer callback mechanism uses L4 IPC to communicatetivithimers owner thread. This commu-
nication method passes the timer mask to the receivingdhiigze callback will then iterate through the
list of active timers to check whether or not the current tisntéameout value is greater than the system
clock. In the case where the timer is not greater than thessesém time, the system will set up the
timer to timeout at the specified time. If it is below the cutréme it will just continue to iterate through
the list until it reaches a timer whose timeout value is altbeecurrent system time.

Timer methods which are not involved in the client server na@ésm of the server are stated below

make_activetakes an inactive timer item and removes it from the inadiiver list and places it in the
correct posityion in the active list.

delete_inactivedeletes an inactive timer from the timer list.
insert_inactiveinserts an inactive timer into the timer list.

make_activemakes an inactive timer active. It also removes the timanftioe inactive list (and places
it in the active list).

deactivate timemakes an active timer inactive, also removes timer fronvadist, and places it in the
inactive list.

NICTA Confidential

Chapter 7

System Startup

7.1 Making a Boot Image

To boot an iguana system you need to load the L4 kerngj, lyuana itself, and any initial services. We
provide a tool that makes it simple to create a boot image fi@w®t of normal ELF files.

We use a tool calledi t e to create a bootimage from a set of input files. The basic fomaif dite is
that it creates a single ELF file, containing all the progractisns of the input files. Secondly it creates
a bootinfo structure (as per the L4::Pistachio referenceual} describing the input files. Finally it also
patches the address of the bootinfo structugeand root task into the kernel configuration page.

7.2 lguanao

This section is pretty unclear [GH]

In an L4 based systens; typically acts as the root task's pager. On stardgpwill acquire all free
physical memory in the system (which it will map one to onenwtiite virtual addresses of)) and pass it

to the root task when it is requested. This is also called erahghical paging system since the user-level
application (in our case the root task) that will receive plages fromz(will then allocate them on to
other faulting tasks, through the use of a virtual memoryteys(or some other system). The method
L4 uses to complete the passing of memory fr@grto the root task is IPC, where the message contains
an fpage mappingf a system flexpage (whose size is architecture-dependuiitiple sizes may be
supported).

oo IS run as its own task, this means that during boot time itmé@#d to collect its own information about
the memory usage in the systemy obtains this information about the system through the ugbef
lower L4 kernel interface, more specifically thd _Get Ker nel | nt er f ace function. As described

in Section 7.1 L4 will know where in the boot image each part of the Iguanstey is located during
start up. Since all relevant information abeytand the root task is stored in the L4 kernel configuration
page, we can use normal L4 calls to access this informatiackiguand easily. An advantage of this
method is that botlry and the root task can access this information at the sameatich@vork from the
data gathered from the kernel interface page.

In order to process requests from only valid regions of megmgrwill create a boot map memory image
which stores all the valid regions of the root task, as wellaghe valid memory regions from the L4
kernel configuration page. For example in a page-fault r&igug will search through the boot map
image to see if the faulting address is actually a valid asklbefore it completes the mapping. The boot
map gets its information about valid regions of memory byatieg through the memory descriptors
from the previously acquired kernel configuration page.

DRAFT NICTA Confidential 25

26 DRAFT System Startup

oo accepts pagefaults and memory requests from the root tdgk As a result,oq just sits in a loop
waiting to process requests from the root server. A pagée fadurs when the root task faults on an
address. A page request will occur when the root task exglasks for an address to be mapped. When
a page fault occursyyg maps a valid physical address stored in the boot map steuctiivhen a page
request occurs, we just map the requested address to a fpdgea. The difference between the two
operations is that with a pagefault the mapped memory hagiitdbase set as the faulting address, that
is, the memory is mapped to a virtual address, whereas thergagest does not do this, it just maps an
fpage of the address passed to it.

7.3 Booting an Iguana System

| BEGIN: To be revised — Rough draft only! |

At startup the first application passed is started and giVlethe caps to the system. It then chooses
policy of what to run and with which caps.

In reality we have a script language "conf" (see my thesid)asimple default initialisation which parses
a provided conf file (which is just a file in the bootimage) anelrt starts the system based on that.

END: To be revised — Rough draft only|

NICTA Confidential

Chapter 8

Device Drivers

Low level drivers are programmed to the device driver framdwnodel. Iguana defines the interfaces
and model of interaction between device drivers. Deviceedsi interact via a shared command buffer
mechanism. This allows efficient asynchronous commumiodietween the client and driver.

An Iguana device driver consists of three parts

e A generic library interface which contains functions tougeand tear down direct memory access.
This library also has the interrupt jump functions for useewlan interrupt is called.

¢ A device specific library which is explicitly written for edevice.

e A class specific server which gets compiled against the despecific part to produce a device
driver server.

For the device specific part of the device driver, the devideedwriter has to write methods to do the
following

setup called to initialise device (interrupts are not enableceher

static void *setup(int spacec, bus_space_t *spacev,
dnma_handl e_t dma, bus_space_t pciconf);

enable start the device (interrupts enabled now).
static void enabl e(void *device);
cleanup called to cleanup the device.
static void cleanup(void *device);
interrupt called when an interrupt is called.

static void interrupt(void *device);

All drivers will have a data structure which holds infornmatiabout the drivers operations. These oper-
ations are different depending on what type of device isgpased. For example, in the case of a serial
driver the individual operations are read and write.

Each driver needs to have its own device driver server, tilt the bootmap image during the boot
image creation.

DRAFT NICTA Confidential 27

28 DRAFT Device Drivers

The device driver framework used in the Iguana system plalte$ the driver code at a user level. This
should be obvious from the fact that each driver needs ardsaeer and is placed into the boot image
at build time.

Each device will be represented in the system by a data steuathich will be able to be cast to a driver
instance. In this way we can allow an individual device todgresented as a driver in the system.

Each driver instance has an asynchronous callback bufferefwling and writing to the device, this
asynchronous communication is detailed elsewhere in theiaddas well as the reasons behind it).

NICTA Confidential

Appendix A

Kenge Library Summary

DRAFT NICTA Confidential

29

Appendix B

Build Instructions

BEGIN: To be revised — Rough draft only! |

In order to build the Iguana system (and its related compshgou will need to have the following tools
installed.

tla is used for revision control. It can be foundretp://gnuarch.org/

python 2.3 for use by thetlacommand and other related build tools. It can be found at
http://www.python.org/2.3.4/

SCons is the actual build system. It can be foundhép://www.scons.org/

toolchain to cross compile the source into a native binary. It can be ndouat
http://kegel.com/crosstool/

dite for patching multiple binaries into a single binary for ugetbe bootloader

Once the tools are installed we can get on to builiding théesys It should be noted here that we will
use the ARM architecture as an example.

1. First we need to get the sources. We can either downloadrelease tarball from
http://www.disy.cse.unsw.edu.au/Software/lguana/ or use the followingtla command to get
the release.
tla get disy@cse.unsw.edu.au—2004/iguana-projeceseseiguana-project
or for more recent code we can use
tla get disy@cse.unsw.edu.au—2004/iguana-projectdHimaiiguana-project

2. Setupthe sources. To do this we can use the command (feide iof the iguana-project directory)
tla build-config iguana
this will build the external parts of the Iguana system (faraple wombat)

3. Build the Iguana system. Run the command
scons
arm-elf-run build/bootimg.dite

END: To be revised — Rough draft only

30 NICTA Confidential

http://gnuarch.org/
http://www.python.org/2.3.4/
http://www.scons.org/
http://kegel.com/crosstool/
http://www.disy.cse.unsw.edu.au/Software/Iguana/

Appendix C

Commented Example

Give a longish listing of fragments of real code, with a lineby-line explanation next to it (or better
in-line comments?)

BEGIN: To be revised — Rough draft only!

Eg: 1 -process_create()fexec()

/'l Setup new PD

new _process = ny_pd->new _pd();

new_process->set _restok(ny_pd, restok);

[l or should this be nmy_pd->transfer_restok(new process, restok)?
stack_c = new_process->new_nenm DEFAULT_STACKSI ZE) ;
data_c = new _process->new nen(data_segnent _si ze);
clist_c = new_process->new_nen(DEFAULT_CLI ST_SI ZE) ;
add cap to clist(clist, stack c);
add_cap_to_clist(clist, clist_c);

add cap to clist(clist, data _segnment _c);
add_cap_to_clist(clist, new process _c);

Mai n_c = new_process->new t hread(main_|4tid);
mai n_c->start(entry_pt, stack c.id);

END: To be revised — Rough draft only|

DRAFT NICTA Confidential 31

Appendix D

Implementation Restrictions

D.1 PD encapsulation

The L4Ka::Pistachio kernel, on which Iguana is presentlplamented, does not support an efficient
mechanism for encapsulating protection domains (i.etriciag a PD’s communication to sessions).
Flags forcr eat e_pd will be used to enforce this encapsulation (usingredirectorg, but this will
impose significant run-time overhead.

Thecr eat e_pd function does not currently accept any flags, and hence enlzjon is not presently
enforced. Instead we presently rely on a server-side ppbtoc ensuring that PDs only communi-
cate via sessions to which they hold capabilities. For deszn of the server side protocol please see
Section D.10

The need for this protocol will be eliminated onceeat e_pd flags are implemented (although the
run-time cost will be higher than that of the server-sidetqeol).

This will all become redundant once a security-enhanced dreéd provides an efficient IPC control
mechanism; this is expected to be available by mid 2005. @msds in place, PDs wilalwaysbe
encapsulated, without the need for either server-sid@potg or significant run-time overheads.

D.2 L4 global thread Ids

L4 is moving away from a global thread Id model. Iguana is re@ily tied to global thread Ids and will
support the new model when it appears.

D.3 renove cli st

There is currently no way to remove a clist once it has beerddd

D.4 Async communications for sessions

The current session async API, as viewablédjapendix E is relatively recent and subject to change.

32 NICTA Confidential

D.5 Attributes forback _nmensecti on DRAFT 33

D.5 Attributes for back _nensecti on

Currently the only attributes supported are for cached ar@hched backing, but in the future other
attributes may be added, either globally or on a per-arctite basis.

D.6 Memory section rights

Currently no specific access rights are needed to uskdble memsectiomethod. In future there may
be some security checks on whether or not the useRMEX capabilities on the memsection.

D.7 Domain of a thread

Finding a protection domain of a thread is currently not iempénted.

D.8 Register server return value

This method is defined as returning int, but the actual sergigoid. This means that the wrapper returns
basically random stulff.

D.9 Unsorted Clists

Clists are currently only stored in an unsorted format. mftiture they may be stored in sorted format,
but this is still under discussion. The unsorted format moserves to avoid race conditions while
updating Clists.

D.10 Server side protocol

As described previously Ilguana does not have any in buiteptimn mechanisms for ensuring PD only
communicate through the session mechanism. As such a sedesprotocol is used to enforce this
restriction.

On every call to the Iguana server a security check can benpeefd on the client to see if the client has
the correct Clist to perform the required operation.

This security check first finds which memory section the dbjexwant to access is in. It then iterates
through the Clists of the protection domain to see if it hasadciting capability. If a match occurs the
operation the client wants to perform will proceed.

NICTA Confidential

Appendix E

C Bindings for Library API

E.1 libs/iguana/include/iguana/types.h File Reference

#i ncl ude <l 4/types. h>
#i ncl ude <stdint. h>

Classes

e structcap_t

Defines

o #defineINVALID_CAP {.ref.obj=0}
o #definelS_VALID_CAP (x) (x.ref.obj !=0)

Typedefs

e typedef uintptr_bbjref t

o typedefobjref t memsection_ref t
o typedefobjref t thread_ref t

o typedefobjref t pd_ref t

o typedefobjref t session_ref t

o typedefobjref _t eas_ref t

o typedefobjref t hw_ref t

34 NICTA Confidential

E.2 libs/iguana/include/iguana/memsection. DIRA¢-Refee

35

E.1.1 Define Documentation

E.1.1.1 #define INVALID_CAP {.ref.obj=0}
E.1.1.2 #define IS_VALID_CAP(x) (x.ref.obj !=0)
E.1.2 Typedef Documentation

E.1.2.1 typedef objref teas ref t

E.1.2.2 typedef objref t hw_ref t

E.1.2.3 typedef objref_t memsection_ref t
E.1.2.4 typedef uintptr_t objref t

E.1.2.5 typedef objref tpd ref t

E.1.2.6 typedef objref t session_ref t

E.1.2.7 typedef objref_t thread_ref t
E.2 libs/iguana/include/iguana/memsection.h File Refence

#i ncl ude <stdint.h>
#i nclude <l 4/types. h>
#i ncl ude <iguana/types. h>

Defines

o #defineMEM_NORMAL 0x1
e #defineMEM_DIRECT 0x2
o #defineMEM_DMA 0x4

Functions

e memsection_ref t memsection_creat@uintptr_t size, uintptr_tbase)
Create a new memory section.

memsection_ref t memsection_create_fixe@intptr_t size, uintptr_t base)
Create a new memory section at a fixed location.

cap_t _cap_memsection_creat@uintptr_t size, uintptr_tbase)
int memsection_register_servefmemsection_ref _tmemsectthread_ref _t server)

Register a server thread for this memory section.

memsection_ref t memsection_lookufobjref t object,thread_ref t xserver)
Return the memsection and server thread for the suppliegttbj

NICTA Confidential

36 DRAFT C Bindings for Library API

¢ void * memsection_basémemsection_ref tmemsect)

E.2.1 Define Documentation
E.2.1.1 #define MEM_DIRECT 0x2

Memory whose virtual address equals its physical address

E.2.1.2 #define MEM_DMA 0x4

DMA-able memory.

E.2.1.3 #define MEM_NORMAL 0x1

Normally-allocated virtual memory

E.2.2 Function Documentation

E.2.2.1 cap_t_cap_memsection_create (uintptr stze, uintptr_t x base)
E.2.2.2 voidk memsection_base (memsection_ref nhemsect)

Return the base address of a given memory section

Parameters:
«— memsect The memory section to lookup

Returns:
The base address. NULL on failure

E.2.2.3 memsection_ref _t memsection_create (uintptr stze, uintptr_t * base)
Create a new memory section.

Parameters:
«— size The size of the memory section in bytes

— xbase The (virtual) base address of the new memory

Returns:
A reference to the new memory section.

E.2.2.4 memsection_ref t memsection_create_fixed (uiritpt size, uintptr_t base)
Create a new memory section at a fixed location.

Parameters:
«— size The size of the memory section in bytes

— base The virtual base address of the new memory

NICTA Confidential

E.3 libs/iguana/include/iguana/pd.h File RefErMeAcer

37

Returns:
A reference to the new memory section.

E.2.2.5 memsection_ref t memsection_lookup (objref dbject, thread_ref t * server)

Return the memsection and server thread for the suppliegtiobj

Parameters:
«— object The object for which memsection and server information uined

— xserver The server thread for the supplied object

Returns:
The memsection for the supplied object.

E.2.2.6 int memsection_register_server (memsection_reafmemsect, thread_ref t server)

Register a server thread for this memory section.

Parameters:
«— memsect The memory section to register the server for

«— server lguana thread reference to the server thread

Returns:
Undefined.

E.3 libs/iguana/include/iguana/pd.h File Reference

#i nclude <l 4/types. h>
#i ncl ude <iguana/types. h>

Functions

e pd_ref _t pd_myself(void)
Return a reference to the current protection domain.

pd_ref t pd_create(void)
Create a new PD owned by the current PD.

pd_ref t pd_create_pd(pd_ref t pd)
Create a new PD owned by the specified PD.

void pd_delete(pd_ref t pd)
Delete protection domain.

thread_ref t pd_create_thread(pd_ref t pd, L4 Threadld_#thrd)
Create a new thread in the specified protection domain.

NICTA Confidential

38 DRAFT C Bindings for Library API

thread_ref t pd_create_thread_with_priority (pd_ref t pd, int priority, L4 Threadld_-
t xthrd)

Create a new thread in the specified protection domain wigsitecified priority.

memsection_ref t pd_create_memsectiofpd_ref t pd, uintptr_t size, uintptr_tbase)

Create a new memory section in the specified protection damai

void pd_set_callback(pd_ref t pd, memsection_ref tcallback)
Setup an async communications channel for messages.

uintptr_tpd_add_clist(pd_ref t pd, memsection_ref _tclist)

Add a clist to this protection domain.

E.3.1 Function Documentation
E.3.1.1 uintptr_t pd_add_clist (pd_ref tpd, memsection_ref tclist)

Add a clist to this protection domain.

Parameters:
«— pd The protection domain to add the clist to

«— clist The new clist to add
E.3.1.2 pd_ref t pd_create (void)

Create a new PD owned by the current PD.

Returns:
A reference to the new PD

E.3.1.3 memsection_ref _t pd_create_memsection (pd_réfpd, uintptr_t size, uintptr_t * base)

Create a new memory section in the specified protection domai

Parameters:
— pd The containing protection domain

«— size The size of the new memory section in bytes
— xbase The base address of the new memory section

Returns:
A reference to the new memory section

E.3.1.4 pd_ref tpd create_pd (pd_ref pd)
Create a new PD owned by the specified PD.

NICTA Confidential

E.3 libs/iguana/include/iguana/pd.h File RefErMeAcer 39

Parameters:
«— pd The owning PD

Returns:
A reference to the new PD

E.3.1.5 thread ref t pd_create thread (pd_ref pd, L4 Threadld_t * thrd)

Create a new thread in the specified protection domain.

A new thread is created in the supplied PD. The L4 thread IChefrtew thread is stored in the thrd
param, and the Iguana thread ID is returned.

Parameters:
«— pd The containing protection domain

— xthrd The L4 thread ID of the new thread

Returns:
A reference to the new Iguana thread ID

E.3.1.6 thread _ref t pd_create thread_ with_priority (pd_ref t pd, int priority, L4 Threadld_t x
thrd)

Create a new thread in the specified protection domain wittsiecified priority.

A new thread is created in the supplied PD. The L4 thread IDhefrtew thread is stored in the thrd
param, and the Iguana thread ID is returned.

Parameters:
«— pd The containing protection domain

«— priority The thread’s initial priority, from 1 to 255.
— xthrd The L4 thread ID of the new thread

Returns:
A reference to the new Iguana thread ID

E.3.1.7 void pd_delete (pd_ref_pd)

Delete protection domain.

Parameters:
«— pd The protection domain to delete

Returns:
If called on your own protection domain this call will not uet

E.3.1.8 pd_ref t pd_myself (void)
Return a reference to the current protection domain.

NICTA Confidential

40 DRAFT C Bindings for Library API

E.3.1.9 void pd_set_callback (pd_ref _pd, memsection_ref_tcallback)

Setup an async communications channel for messages.

Parameters:
«— pd The containing protection domain

«— callback A reference to the callback buffer.

E.4 libs/iguana/include/iguana/eas.h File Reference

#i ncl ude <l 4/types. h>
#i ncl ude <iguana/types. h>

Functions

e cas ref teas creatfl4 Fpage tKkip, L4 Fpage_t utch)

Create an external address space.

e void eas_deletdeas_ref teas)

Delete an external address space.

e L4 Threadld teas create threadeas _ref teas, L4 Threadld_t pager, L4 Threadld t sched-
uler, void xutchb)

Create a new thread in the external address space.

e void eas_delete_threadeas_ref teas, L4 Threadld_t thread)

E.4.1 Function Documentation
E.4.1.1 eas_ref teas_create (L4 _Fpagekip, L4 Fpage_tutcb)

Create an external address space.

E.4.1.2 L4 Threadld_t eas_create_thread (eas_refens, L4 Threadld_t pager, L4 Threadld_t
scheduler, void * utch)

Create a new thread in the external address space.

Parameters:
«— eas The external address space

«— pager The new thread’s pager

«— scheduler The new thread’s scheduler

NICTA Confidential

E.5 libs/iguana/include/iguana/object.h File RB¥&FEhce 41

E.4.1.3 void eas_delete (eas_refehs)

Delete an external address space.

Parameters:
«— eas the EAS to delete.

E.4.1.4 void eas_delete_thread (eas_refeas, L4_Threadld_t thread)
E.5 libs/iguana/include/iguana/object.h File Reference

#i ncl ude <l 4/types. h>

#i ncl ude <iguana/types. h>

Classes

e structobject t

Functions

e object _t « object_get interface(objref_t obj)
e object_t x object_get_async_interfacdobjref t obj)
e void object_print (object_t xinstance)

E.5.1 Function Documentation
E.5.1.1 object_& object_get_async_interface (objref_bhj)
E.5.1.2 object_& object_get_interface (objref_tobj)

E.5.1.3 void object_print (object_tx instance)
E.6 libs/iguana/include/iguana/session.h File Refereac

#i ncl ude <stdbool . h>
#i ncl ude <l 4/types. h>

#i ncl ude <iguana/types. h>

Classes

e structsession

Functions

e sessionx session_creatéobjref t object,memsection_ref tclist, L4 Threadld_tserver_tid)
Create a new session, with a specified clist.

NICTA Confidential

42 DRAFT C Bindings for Library API

e sessionx _session_creatéobjref t object,memsection_ref tclist, L4 Threadld_tserver _tid,
structsessionsession
e sessionk session_create_new_cligpbjref t object, L4_Threadld_tserver_tid)

Create a new session, and create a dedicated clist for it.

e sessionk session_create_full_sharéobjref t object, L4 Threadld_sserver _tid)
Create a new session, and share your base clist with it.

e void session_add_asynstructsessiontsessionobjref t call_buf,objref t return_buf)

Set up async buffers for session communcations.

e boolsession_provide accegstructsessiorksessionobijref t object, int interface)
e void session_deletéstructsessiontsession

E.6.1 Function Documentation

E.6.1.1 struct session_session_create (objref_object, memsection_ref_tclist, L4_Threadld_t x
server_tid, struct session« session)

E.6.1.2 void session_add_async (struct sessiegession, objref_t call_buf, objref t return_buf)

Set up async buffers for session communcations.

Parameters:
«— session The session to use

«— call_buf A circular buffer for calls through the session
«— return_buf A circular buffer for return values from the session

E.6.1.3 struct sessionsession_create (objref_bbject, memsection_ref tclist, L4_Threadld_t
server_tid)

Create a new session, with a specified clist.

Parameters:
object The object that you wish to access

clist The clist which the server will be provided with.
server_tid The L4 thread Id of the approriate server is returned.

Returns:
A pointer to the userlevel session object

E.6.1.4 struct sessionsession_create_full_share (objref object, L4 Threadld t = server_tid)

Create a new session, and share your base clist with it.

This is obviously not meant to be generally used, and prevalshort cut until all software correctly
uses caps.

NICTA Confidential

E.7 libs/iguana/include/iguana/thread.h File RefeFdnce 43

Parameters:
«— object The object that you wish to access

— server_tid The L4 thread Id of the approriate server is returned

Returns:
A pointer to the userlevel session object
E.6.1.5 struct sessionsession_create_new_clist (objref dbject, L4 Threadld_t * server_tid)

Create a new session, and create a dedicated clist for it.

Parameters:
object The object that you wish to access

server_tid The L4 thread Id of the approriate server is returned

Returns:
A pointer to the userlevel session object
E.6.1.6 void session_delete (struct sessiarsession)

Delete a session making any communication based on th@sésgossible.

Parameters:
session The session to delete
E.6.1.7 bool session_provide_access (struct sessiasession, objref t object, int interface)

Provide a given session access to a specific interface onject ob

Parameters:
session The session to provide the access to

object The object to provide access to

interface The allowed interface

Returns:
True if access was provided. False otherwise. You may nobleeta provide access if you do not
have access, or have access, but can not transfer it.

E.7 libs/iguana/include/iguana/thread.h File Reference

#i ncl ude <l 4/types. h>
#i ncl ude <iguana/types. h>

NICTA Confidential

44 DRAFT C Bindings for Library API

Functions

e L4 Threadld_thread_l4tid (thread_ref t server)
Return the L4 global thread ID for this Iguana thread.

thread_ref _t thread_myself (void)
Retrieve the Iguana thread reference of the current thread.

thread_ref t thread_create(L4_Threadld_t«thrd)

Create a new thread in the current PD.

thread_ref _t thread_create_priority (int priority, L4 Threadld_tthrd)

Create a new thread in the current PD and assign it a non-defaiority.

void thread_start (thread_ref _t thread, uintptr_t ip, uintptr_t sp)
Activate an inactive thread.

void thread_delete(L4_Threadld_t thrd)
Delete a thread.

thread_ref _t thread_id (L4_Threadld_t thrd)
Return the Iguana thread reference for a given L4 globaldhréd.

E.7.1 Function Documentation
E.7.1.1 thread_ref tthread create (L4_Threadld_t« thrd)

Create a new thread in the current PD.

A new lguana thread is created in the current protection dmnTdne thread is initially created inactive;
use L4's ExchangeRegisters() function tleread_start()(p. 45), below, to activate it.

Parameters:
— thrd The L4 global thread Id of the new thread is stored here

Returns:
the Iguana thread reference for the new thread

E.7.1.2 thread_ref _tthread_create_priority (intpriority, L4 Threadld_t « thrd)

Create a new thread in the current PD and assign it a nonitpfaarity.

Parameters:
«— priority An integer between 1 (lowest) and 255 (highest) specifytreggriority
— xthrd The L4 global thread Id of the new thread is stored here

Returns:
the Iguana thread reference for the new thread

NICTA Confidential

E.7 libs/iguana/include/iguana/thread.h File RefeFdnce 45

E.7.1.3 void thread_delete (L4_Threadld_thrd)
Delete a thread.

Parameters:
«— thrd the L4 thread Id of the thread to delete

E.7.1.4 thread_ref _tthread_id (L4_Threadld_tthrd)

Return the Iguana thread reference for a given L4 globahthtd.

Parameters:
«— thrd the L4 thread Id

Returns:
the Iguana thread reference for "thrd"

E.7.1.5 L4 Threadld_tthread_l4tid (thread_ref t server)

Return the L4 global thread ID for this Iguana thread.

Parameters:
«— server The Iguana thread for which an L4 global ID is desired

Returns:
The L4 global thread ID for this thread

E.7.1.6 thread_ref t thread _myself (void)

Retrieve the Iguana thread reference of the current thread.

Returns:
The Iguana thread reference of the current thread

E.7.1.7 void thread_start (thread_ref_tthread, uintptr_t ip, uintptr_t sp)

Activate an inactive thread.

Make an inactive thread schedulable. The thread will steteting at the supplied instruction pointer.

Parameters:
— thread the Iguana thread reference to the thread to activate

— ip the initial IP address of the thread
«— gp the initial stack pointer of the thread

NICTA Confidential

Appendix F

C Bindings for Low-level API

46 NICTA Confidential

Appendix G

lguana IDL

Iguana uses a subset of CORBA IDL format to define interfadé IDL file is processed to produce
two stub files one for the server-side and one for the client-side. Feregice, Iguana’s main IDL file is
reproduced below.

~
*

* X XK K K KKK XX K KKK KKK KK KKK KKK K KKK X XK

Australian Public Licence B (OZPLB)
Version 10

Copyright (c) 2004 National ICT Australia
All rights reserved.

Developed by: Embedded, Refilne and Operating Systems Program (ERTOS)
National ICT Australia
http://www.ertos.nicta.com.au

Permission is granted by National ICT Australia, free of & to
any person obtaining a copy of this software and any assediat
documentation files (the "Software") to deal with the Safewaithout
restriction, including (without limitation) the rights tase, copy,
modify, adapt, merge, publish, distribute, communicateth® public,
sublicense, and/or sell, lend or rent out copies of the Swo#éwand
to permit persons to whom the Software is furnished to do sbjest
to the following conditions:

« Redistributions of source code must retain the above cgpyri
notice, this list of conditions and the following disclaise

x Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimers in the documentation and/or other materialgvpted
with the distribution.

+ Neither the name of National ICT Australia, nor the names tef i
contributors, may be used to endorse or promote productsvetbr
from this Software without specific prior written permissio

DRAFT NICTA Confidential 47

48 DRAFT Iguana IDL

EXCEPT AS EXPRESSLY STATED IN THIS LICENCE AND TO THE FULLEEXT
PERMITTED BY APPLICABLE LAW, THE SOFTWARE IS PROVIDED-1&$ AND
NATIONAL ICT AUSTRALIA AND ITS CONTRIBUTORS MAKE NO REPRESEIONS,
WARRANTIES OR CONDITIONS OF ANY KIND, EXPRESS OR IMPLIECLUNDING

BUT NOT LIMITED TO ANY REPRESENTATIONS, WARRANTIES OR CDQNS
REGARDING THE CONTENTS OR ACCURACY OF THE SOFTWARE, OR QEETIT
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NORINGEMENT,

THE ABSENCE OF LATENT OR OTHER DEFECTS, OR THE PRESENCE ORNHS OF
ERRORS, WHETHER OR NOT DISCOVERABLE.

TO THE FULL EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENTASH
NATIONAL ICT AUSTRALIA OR ITS CONTRIBUTORS BE LIABLE ON ANGAL
THEORY (INCLUDING, WITHOUT LIMITATION, IN AN ACTION OF CORACT,
NEGLIGENCE OR OTHERWISE) FOR ANY CLAIM, LOSS, DAMAGES OREGTH
LIABILITY, INCLUDING (WITHOUT LIMITATION) LOSS OF PRODUION OR
OPERATION TIME, LOSS, DAMAGE OR CORRUPTION OF DATA OR RECHDRIR LOSS
OF ANTICIPATED SAVINGS, OPPORTUNITY, REVENUE, PROFIT OFOBWILL, OR
OTHER ECONOMIC LOSS; OR ANY SPECIAL, INCIDENTAL, INDIRECT,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES, ARISING @¥FTOR IN
CONNECTION WITH THIS LICENCE, THE SOFTWARE OR THE USE OF ORERT
DEALINGS WITH THE SOFTWARE, EVEN IF NATIONAL ICT AUSTRALR I0S
CONTRIBUTORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCHAINGL LOSS,
DAMAGES OR OTHER LIABILITY.

If applicable legislation implies representations, wanti&s, or
conditions, or imposes obligations or liability on NatidneCT
Australia or one of its contributors in respect of the Sofevahat
cannot be wholly or partly excluded, restricted or modifi¢ke
liability of National ICT Australia or the contributor is fnited, to
the full extent permitted by the applicable legislation, itst

option, to:

a. in the case of goods, any one or more of the following:

i. the replacement of the goods or the supply of equivalerudgo
i. the repair of the goods;

iii. the payment of the cost of replacing the goods or of adngi
equivalent goods;

iv. the payment of the cost of having the goods repaired; or
b. in the case of services:

i. the supplying of the services again; or

ii. the payment of the cost of having the services suppliedinag

The construction, validity and performance of this licensegoverned
by the laws in force in New South Wales, Australia.

¥ XK X K K K K KX X K K KKK KKK KKK KKK K KKK KX K KKK KKK X KK XX XX

*
~

[%

« Iguana IDL for dealing with userland
x eg. pagefaults, exceptions, syscalls.
*

*/

/x Import L4 and standard types/

NICTA Confidential

DRAFT 49

import "1 4/ types. h";
import "i guana/types. h";
import "stdint.h";
import "stddef.h";
I+ FIXME: define these numbers some place sane for managgabilit
[uuid(21)]
interface iguana_ex
{
/x a pagefault (from iguana userland)/
[kernelmsg(idl4::pagefault)]
void pagefaultin uintptr_t addr,in uintptr_t ip, in uintptr_t priv,
out fpage fp);

I+ FIXME: add thread exceptions/

h
[uuid(22)]
interface iguana_pd
{
[+ This method is kind of magie/
objref_t mypd();
cap_t create_memsectiam(pd_ref t pd,in uintptr_t size,in uintptr_t base,in int flags,
out uintptr_t base_out);
cap_t create_pd(pd_ref t pd);
cap_t create_thread(pd_ref t pd,in int priority, out L4 Threadld t 14_id);
cap_t create_edn(pd_ref t pd,in L4 Fpage_t kip,in L4 Fpage_t utch);
cap_t create_sessiom(pd_ref t pd,in thread ref t clientin thread ref t server,
in memsection_ref t clist);
void set_callbackfi pd_ref t pd,in memsection_ref t callback buffer);
uintptr_t add_clisi6 pd_ref t pd,in memsection_ref t clist);
void delete{n pd_ref t pd);
h
[uuid(23)]
interface iguana_eas
{
cap_t create thredd(eas_ref t easin L4 Threadld t pager,
in L4_Threadld_t scheduleiin uintptr_t utcb,
out L4 Threadld t 14 _id);
void delete{n eas _ref t eas);
h
[uuid(24)]
interface iguana_thread
{

[+ This is another ‘magic’ method/
thread_ref t id6 L4 Threadld_t thread);
L4 Threadld_t l4idih thread ref t thread);
void start{n thread _ref t threadin uintptr_t ip, in uintptr_t sp);
/% pd_ref t domain(in thread_ref t thread);
void delete{n thread ref t thread);
h
[uuid(25)]
interface iguana_hardware

NICTA Confidential

50 DRAFT Iguana IDL

{
int register_interrupt@ hw_ref t hardwarejn L4 Threadld t handler,
in int interrupt);
int back_memsectiom{(hw_ref t hardwarejn memsection_ref t memsection,
in uintptr_t paddr,in uintptr_t attributes);
%
[uuid(26)]
interface iguana_memsection
{
int register_serveitf memsection_ref t memsectiom thread_ref t thread);
memsection_ref t lookujp(uintptr t addressout thread_ref t server);
uintptr_t infofn memsection_ref t memsection);
void delete(n memsection_ref t thread);
%
[uuid(27)]
interface iguana_session
{
void delete{(n session_ref t session);
void add_bufferin session_ref t sessiofnn objref _t call_buf,in objref _t return_buf);
¥

NICTA Confidential

Bibliography

DRAFT

NICTA Confidential

51

	Introduction
	Iguana Concepts
	Iguana API
	Clients, servers, and objects
	Capabilities
	Protection Domains
	Threads
	Memory sections
	Sessions
	Resource Tokens
	External Address Spaces
	Hardware
	Exceptions
	Synchronisation
	API Summary

	Protection Management
	Capabilities and Protection Domains
	Iguana capabilities
	Capability lists

	Managing Protection Domains
	Manipulating protection domains
	Implementing various protection models

	Resource Management
	Resource charging
	Resource accounts
	Income
	Taxes
	Granting resource tokens
	Resource management models

	Iguana Services
	Memory section server
	Establishing Sessions
	Naming
	Timer

	System Startup
	Making a Boot Image
	Iguana 0
	Booting an Iguana System

	Device Drivers
	Kenge Library Summary
	Build Instructions
	Commented Example
	Implementation Restrictions
	PD encapsulation
	L4 global thread Ids
	remove_clist
	Async communications for sessions
	Attributes for back_memsection
	Memory section rights
	Domain of a thread
	Register server return value
	Unsorted Clists
	Server side protocol

	C Bindings for Library API
	libs/iguana/include/iguana/types.h File Reference
	Define Documentation
	Typedef Documentation

	libs/iguana/include/iguana/memsection.h File Reference
	Define Documentation
	Function Documentation

	libs/iguana/include/iguana/pd.h File Reference
	Function Documentation

	libs/iguana/include/iguana/eas.h File Reference
	Function Documentation

	libs/iguana/include/iguana/object.h File Reference
	Function Documentation

	libs/iguana/include/iguana/session.h File Reference
	Function Documentation

	libs/iguana/include/iguana/thread.h File Reference
	Function Documentation

	C Bindings for Low-level API
	Iguana IDL

