OUTL'NE (E >NATIONAL O

e Introduction

NATIONAL
ICT AUSTRALIA

UMITED

IGUANAL
A PROTECTION AND RESOURCE MANAGER

e Iguana concepts, abstractions and mechanisms

e |lguana API
FOR EMBEDDED SYSTEMS
e Kenge
Gernot Heiser, Ben Leslie
Embedded, Real-Time and Operating Systems Program
National ICT Australia
August 2004
lName SUbjeCt to Change Iguana (© National ICT Australia, 2004 2 Iguana

WHAT IS IGUANA? (9—05333%5 SAMPLE IGUANA SYSTEM (9—@55‘33-":335

e Remember, L4 is a “strict” microkernel:

O does not provide any services
O does not provide policies (or only very few)
O provides mechanisms

e L4 aspires to be generic kernel, suitable for all kinds of systems

e Almost any system requires a set of core services:

0 process management
0 memory management
0 security management

... based on some system-wide policies

e Iguana provides these (or at least more tools for providing them) _

e Iguana is designed for use in embedded systems

(© National ICT Australia, 2004 3 Iguana (© National ICT Australia, 2004 4 Iguana

—
WHAT DOES IGUANA PROVIDE? ‘\'>—@” e AvsTentin

e Convenient way of using L4 primitives

O OO-style method invocations instead of explicit IPC calls
O IDL compiler for automatic generation of stubs

e Protection framework for access rights management

O capability based, flexible
0 able to model most standard security models

e Virtual memory management

O allocation, deallocation, sharing, ...
O single-address-space view, supporting FASS on ARM
e Protection-domain (process) management

e Thread management

(© National ICT Australia, 2004 5 Iguana

‘/7 NATIONAL
IGUANA : BASIC APPROACH | @@

e Basic idea: single address space (SAS)

— eases sharing of data) \ o

O minimises copying
O no problems with pointers

e Per-process protection domains

— enforce security policy

O any access is subject to access control

— do not interfere with sharing

SAS o

e SAS layout supports fast-address-space switching on ARM

O avoids AS overlaps for non-shared date without use of PID relocation
0 advantage: 1MB domain granularity instead of 32MB for PID relocation
O less internal fragmentation

(© National ICT Australia, 2004 7 Iguana

‘/77 NATIONAL
OUTLINE | @O

e Introduction
e Iguana concepts, abstractions and mechanisms
e Iguana API

e Kenge

(© National ICT Australia, 2004 6 Iguana

‘/7' NATIONAL
IGUANA CONCEPTS @ -

e Memory section

O unit of VM allocation and protection

O can be an encapsulated object with methods and data
e Thread

O execution abstraction, as in L4

e Server

O thread associated with memory section

O invoked through methods with well-defined interfaces
e Protection domain

O defines access and resource rights of a thread
O corresponds to a process in traditional OS

(© National ICT Australia, 2004 8 Iguana

IGUANA CONCEPTS @L""“O

e Session

O client-server (or peer-to-peer) communication channel
O amortises authentication cost over many invocations

e Capability

O represents access rights
O basis of protection

e Resource token
O represents resource usage right
0 basis of resource management
e External Space
0 address space extern to Iguana’s SAS

O for legacy support and large processes

(© National ICT Australia, 2004 9 Iguana

NATIONAL
IGUANA CONCEPTS @—O
Protection

.i nghts

Thread

Memory section

(© National ICT Australia, 2004 11 Iguana

IGUANA PHILOSOPHY

e Small and lightweight

0 geared towards embedded systems

0 allow optimal utilisation of hardware
e Strong yet unintrusive protection

0 hide protection machinery from most apps

0 able to emulate most standard protection models
e Support for resource management

O in principle, although it isn’'t implemented yet!

e Legacy support

0 designed to run Linux server

NATIONAL
ICT AUSTRALIA

(© National ICT Australia, 2004 10 Iguana
NATIONAL
OUTLINE @m@

e Introduction

e Iguana concepts, abstractions and mechanisms

e Iguana API

0 Note: Under development, details still changing

e Kenge

(© National ICT Australia, 2004 12

Iguana

“/!7 NATIONAL “/!7 NATIONAL
OBJECTS QY OBJECTS: COMMONALITIES @ e

e Six kinds of objects e Objects have a uniqgue name — object ID (OID)

O OIDs are addresses in Iguana’s SAS

1. memor tion
emory sections O only for memory sections does this address correspond to actual memory
2. threads) _
. . e Objects have methods that can be invoked
3. protection domains (PDs)))
— one method that exists for all objects: destroy
4. sessions — each kind of object has a set of pre-defined methods
5. resource tokens (restoks) e Objects are created by invoking constructor on a PD:
O not yet implemented, not covered here O kind_cap = pd->new_kind (args) ;

6. external spaces e Methods are grouped into interfaces

O not full Iguana objects

) . — interfaces also have unique IDs (lIDs) that are OID + interface number
0 serve as proxies for non-lguana objects

— interfaces have capabilities
O grant rights to invoke an interface’s methods

e Access controlled by capabilities — all pre-defined methods belong to separate interfaces
O i.e., access is individually protected
(© National ICT Australia, 2004 13 Iguana (© National ICT Australia, 2004 14 Iguana

“/777 NATIONAL ‘/ NATIONAL
CAPABILITIES QY MEMORY SECTIONS @ e

e A capability is a token that confers some access right(s) e Memory sections represent virtual memory

e Two kinds of capabilities in Iguana: — allocation of a certain amount of virtual memory:

- mem_cap = pd->new_mem(Size);
— master capability

O created when an object is created e Memory sections are the only objects that support user-defined

0 confers rights on all methods of object methods

O allows creation of further capabilities)
O others have pre-defined (standard) methods only

— invocation capability

0O created when an interface is created e Used to provide encapsulated services:

O fers right to invok thods of a single interf .
cONTers fgnt f0 Invoxe methods ofa single Interiace — service = memory (data) + server (thread) + methods

e Capabilities are only active if stored in PD’s capability lists

0 details later

(© National ICT Australia, 2004 15 Iguana (© National ICT Australia, 2004 16 Iguana

—
MEMORY SECTIONS... ‘\\\9—@” e Ry

e To create a service:

— register a server thread on memory section

base->new_server (thread_id) ;
O base is the base address (OID) of the memory section

— register interfaces (user-defined methods)
base = iid->new_cap(Q);
O iid refers to number of new interface

e Registering interfaces supports user-defined methods

— remember: each interface can have one or more methods

O interface number only interpreted by server
O similarly, the method number is an opcode delivered to the interface

— lIDs and method numbers allocated by system implementor

O part of the service’s interface protocol
(© National ICT Australia, 2004 17 Iguana

“/!7 NATIONAL
THREA DS \\\\7] er AUSTRA‘HQ

e Iguana threads are essentially L4 threads:

— threads within same PD operated on by plain L4 syscalls

O correspond to local L4 threads (i.e., same L4 AS)
0 ExchangeRegisters, IPC

— direct IPC to non-local threads is not allowed

O use method invocations (corresponding to server thread)

O presently not enforced by Iguana

O requires enhancements to L4 (forthcoming API) to do efficiently
O will provide attribute to ensure enforcement (at a cost)

e Certain operations require privileges
— e.g. thread creation and deletion done by privileged L4
ThreadControl () call

e Done by Iguana on invocation of appropriate methods

(© National ICT Australia, 2004 19 Iguana

“/777 NATIONAL
MEMORY SECTIONS: PSEUDO METHODS \ &P erawemens

e Read (R), write (W), execute (X) are logically considered methods

— subjects them to same protection mechanisms as other
methods

— no actual methods exist corresponding to those operations

e Further pseudo-method is clist (C)
— needed for manipulating protection domains

— more details later

(© National ICT Australia, 2004 18 Iguana

—
THREAD OPERATIONS \QMO

e Thread creation:
thread_cap = pd->new_thread (&l4_tid) ;
— returns two kinds of thread IDs

* lguana thread ID (tid), part of the thread_cap

O used for protection and other Iguana-specific purposes

* L4 thread ID (14_tid)
0 used for L4 syscalls
e New thread created inactive

— can be activated by:

O L4 syscall ExchangeRegisters() (local threads only)
O Iguana method tid->start(ip,sp)

(© National ICT Australia, 2004 20 Iguana

-
THREAD OPERATIONS... ‘\é—@” e AvsTentin

e Obtain L4 thread ID

0 14tid = tid->14_tidQ);

e Obtain own thread ID
0 tid = myself();

e Obtain protection domain of thread

0 pd = tid->domain();

e Obtain and modify scheduling parameters

[0 tid->schedule_info(&info);

(© National ICT Australia, 2004 21

Iguana

‘/777 NATIONAL
SESSIONS | @ @

e Sessions reduce authentication overheads of repeated calls

e Prior to invoking methods on a service, must establish session

session = pd->new_session(server);

— establishes session between target PD and server

— serverisa PD ID
O Note: This is likely to change

— Iguana informs the server by invoking its notification method
server->session_created(pd);

— lguana notifies remaining partners if the session is destroyed

pd_or_server->session_destroyed(session);

(© National ICT Australia, 2004 22 Iguana

/ NATIONAL
IGUANA CAPABILITIES (@ @

e Iguana capabilities are user-level objects

O password capabilities, consisting of OID and password

‘ object ID password ‘

O Length of password is configurable (normally > 64 bhits)

e Iguana has a list of all valid capabilities

O when validating an operation, matches user’s capability against list

e Capabilities are never explicitly presented to Iguana, instead

O client stores caps in PD’s capability list (Clist) data structures
O client presents object ID to system on method invocation
O system traverses client’s Clists for matching capabilities

e Most applications don’t need to know about capabilities

O protection system is unintrusive
O can emulate wide range of protection models
(© National ICT Australia, 2004 23

Iguana

‘/777 NATIONAL
PROTECTION DOMAINS | @ @y

e Protection domain is defined as a set of capabilities

— lguana PDs represented by a two-level data structure

0 PD associated with an array of Clists
O Clistis an array of capabilities
O Clistis (part of) a memory section
O subject to memory protection like any memory section

— PD may or may not /E’CN lguana
contain its Clists =
0 may or may not be |:| Clist // pd-dese

able to modify itself /

h

O can freeze access [|
rights of a domain ! : |

O also control over | !
adding and removing . Lo
Clists AN

protection domain

(© National ICT Australia, 2004 24 Iguana

“/!7 NATIONAL
PROTECTION DOMAINS (@ @

e Two-level scheme for capability storage provides flexibility
— can give users full control over their access rights
O purely discretionary access control, no system policies
— can force all Clists to be kept by a single server (or set)

O allows server to implement almost
arbitrary security policies
O essentially a segregated

capability scheme %
: is N

Clist Iguana

— hybrid schemes
are possible ! . / \
IIIII IIIII /N\\
- B protection domain
(© National ICT Australia, 2004 25 Iguana

‘/ NATIONAL
EXTERNAL SPACES @

e External spaces are “raw” L4 address spaces
O not part of Iguana SAS

e Provided to deal with restrictions of Iguana model

0 32-bit address space may not be large enough to share between all
protection domains

O legacy support (e.g. strict fork () semantics) may require separate address
spaces

e External spaces come at a cost
— unable to make full use of fast address-space switching on ARM

— not well integrated with Iguana world

O no fine-grained access control provided by Iguana capabilities
O not allowed to communicate with any PD other than creator
O not even with lguana — cannot invoke methods
O this will be enforced as soon as L4 redirectors are implemented
(© National ICT Australia, 2004 27 Iguana

‘/777 NATIONAL
PROTECTION DOMAINS L €T AUSTRALIA
e Presently, access control is disabled
O implementation incomplete
O will be completed in the near future (code is mostly there)

e Present L4 mechanisms are deficient

— L4 provides redirectors for information flow control

O presently not implemented
O to be done later this year

— Redirectors are theoretically sufficient, practically inefficient

O would require all inter-PD communication to go via Iguana server
O doubling of number of IPC operations

— L4 API revision in progress for resolving these issues

0 Iguana ready to take advantage of this
O until then will have a security/performance tradeoff

(© National ICT Australia, 2004 26 Iguana

—
EXTERNAL SPACES — OPERATIONS | @@

e Creation requires explicit specification of KIP and UTCB address

es = pd->new_es (kip, utcb_area);

e Thread creation also requires arguments similar to L4

14tid = es->new_thread(pager,scheduler,starter,utcb);

(© National ICT Australia, 2004 28 Iguana

—
HARDWARE ACCESS “\9—0, b @ i

e Device drivers need to access raw hardware features

e Iguana provides a (static) hardware object for this

— physical memory access:

hardware->back_mem(adr, p_adr, caching);
0O maps the memory section (adr) to the specified physical address with
specified caching attributes

— interrupt association:

hardware->register_interrupt(tid,irq);
O registers the specified thread as the handler of the specified interrupt

(© National ICT Australia, 2004 29

Iguana

—
RESOURCE TOKENS \QL""“O

e lguana’s resource management mechanism

e Note: presently this only exists conceptually

O details of the model still need to be worked out
O however, model is based on our experience with a similar model in Mungi

e Basic idea: all resources have a price that must be paid by the
user

o Model provides great flexibility for defining charging details

(© National ICT Australia, 2004 30 Iguana

OUTLINE ('}M@

e Introduction
e Iguana concepts, abstractions and mechanisms
e Iguana API

e Kenge

(© National ICT Australia, 2004 31

Iguana

KENGE (‘)MO

e Kenge is a set of support libraries for building operating systems

— mostly OS independent
O ... but geared towards L4

— implemented in C

e Kenge is not:
— an L4 server (or servers)
— an OS personality

— a part of Iguana

O although Iguana’s implementation uses Kenge

(© National ICT Australia, 2004 32 Iguana

= =
KENGE COMPONENTS ‘\é—@” T AvSTRALY KENGE COMPONENTS ‘\'>—O” T AUSTRALE

libc a C library 14 L4 system call library
O C99 compliant O from L4Ka::Pistachio distribution
O mostly OS independent, but can be specialised for particular OS O more appropriate place for distribution

O 1/O, memory allocation, CRT, ...

I . . . Generic data structures:
libdriver device driver library

. . — bit_fl: free list based on a bit array
O provides an API against which drivers can be developed

O host OS must provide wrappers implementing the required functionality range_fl: free list baed on linked list of ranges
O provides a set of drivers (presently SA1100 UART only)
O more on drivers later... circular_buffer:
elf library for parsing ELF files hash:
. . II: linked list
l4e convenience functions around L4
O parsing bootinfo
O parsing memory descriptors
(© National ICT Australia, 2004 33 Iguana (© National ICT Australia, 2004 34 Iguana

an =
DEVICE DRIVER FRAMEWORK ‘\é—@” T AvSTRALE DEVICE DRIVER FRAMEWORK ‘\'>—O” T AuSTRALK

e Handles driver’s interaction with environment transparently

e Generic library to write device drivers to O interrupt model: interrupt invokes function in driver
e Write once, run everywhere e Handles allocation of device-specific memory
— drivers portable across processor architectures S B:ﬁ;’:ig’“ of PCI-consistent memory
O e.g., IDE disk, NICs O virtual — physical address translation

— drivers portable across operating systems

O Iguana user-level
O Linux user-level and in-kernel

(© National ICT Australia, 2004 35 Iguana (© National ICT Australia, 2004 36 Iguana

-
DEVICE DRIVER FRAMEWORK ‘\é—@” e AvsTentin

e Interaction of driver with environment
— driver to export a certain API

— dependent on device class:

0 stream device
O network device
O block device
O frame buffer

(© National ICT Australia, 2004 37 Iguana

