
Evaluation of
real-time operating systems

for use in
Integrated Modular Avionics

Professor: Dr. Martin Bogdan, Universität Leipzig
Tutor: Thomas Schanne, EADS Deutschland GmbH
Author: Martin Christian

Structure:Structure:

1.Introduction

Motivation, problem

2.Requirements

Kernel requirements in Integrated Modular Avionic

3.Analyses

• Linux: Free UNIX for PC

• Xen: Hypervisor for para-virtualised guest OS

• Minix 3: μKernel + OS following the „TV model“

• L4: μKernel providing space, activity and communication abstraction

4.Implementation

• L4 implementations + Linux ports on L4 μ-kernel

• Implementation steps

5.Evaluation

What's the result? Does it meet the requirements?

Introduction
Structure

Motivation:

● Linux takes hold of the embedded systems market [heise, 2003]

● Linux is used in a plane by Boeing [heise, 2006]

● All real-time OS can't be evaluated within a Diplomarbeit

● EADS Deutschland GmbH provides the development board of the laser range

radar project Hellas

Problem:

1.Find the most reasonable way to use Linux in Avionics

2.Port Linux to the Hellas-board this way

Introduction
Problem

• Kernel: „[...] is used to denote the part of the operating system that is

mandatory and common to all other software.“ [Liedke, 1995]

➔ Monolithic kernel: Scheduling, interrupt handling, memory management and

device drivers are part of the kernel

➔ Microkernel: „[...] a concept is tolerated inside the μ-kernel only if moving it

outside the kernel [...] would prevent the implementation of the system's

required functionality“ [Liedke, 1995]

• Real-Time: „A real-time system responds in a (timely) predictable way to all

individual unpredictable external stimuli arrivals.“ [Timmerman+, 2005]

➔ Soft Real-Time: Time constraints have to be met on average

➔ Hard Real-Time: Time constraints have to be met always

Introduction
Terms

Goals of Integrated Modular Avionics (IMA):

• Functionality: More functionality in less space

• Safety: Easy handling, reconfiguration on hardware errors

• Costs: Modular architecture cut costs in development and maintenance

Requirements
IMA

Function A Function B

Function A
+

Function B

Avionic: All electronic devices in aviation.

Requirements for an IMA-Kernel:

• Real-Time:

The kernel must meet the real-time requirements of the most demanding

application running on top. → hard real-time

• Partitioning:

“The behaviour and performance of software in one partition must be

unaffected by the software in other partitions.“ [Rushby, 1999]

➔ Space: Partitions must not manipulate data within each other → neither in

memory nor on devices

➔ Time: Partitions must not steal time from each other

Requirements
IMA-Criteria

Requirements
IMA-Criteria

Requirements (continued):

• Trusted Computing Base (TCB):

➔ Minimal TCB → easier certification

➔ Less code → less bugs [Herder+, 2006]

• Open standards:

Independence from manufacturer ensure availability of components

• Modularity:

➔ Re-use of components → less development costs

➔ Exchangeable components → less storage costs (product cycle > 10 years)

Requirements
IMA-Model

OS

IMA Kernel

Hardware

Partition
1

...
Partition

N

OS API

Kernel API

HAL

Generic IMA model according to [Bennett, 2003]

Limitations:

• Open Source:

➔ Easy to obtain

➔ No problems with NDAs

➔ Assured source code availability for project duration

➔ Problems with commercial developers: Acquisition, bankrupt

• Goal-oriented selection:

➔ Only kernel with Linux available

• Pre-selection in [Bennett, 2003]:

➔ Best choice to start kernel development for IMA is L4

➔ Many projects have evolved further → second glance worthwhile

Analyses
Outline

Excluded kernel (selection):

• Mach: 1st generation μ-kernel, [Bennett, 2003]

• C5: Predecessor of Chord OS, [Bennett, 2003]

• RTEMS: Single address space OS (no partitioning)

• MicroC/OS-II: Not Open Source in a narrower sense, no Linux

• (xBSD) Unix: [Bennett, 2003]

• VxWorks: Not Open Source

• QNX: Not Open Source

• PikeOS: Not Open Source

Analyses
Outline

Short-listed kernel:

• Linux: Monolithic kernel with and without real-time patches

• Xen: Virtual Machine Monitor (VMM) from University of Cambridge, UK

• Minix 3: μ-kernel OS from Vrije Universiteit Amsterdam

• L4: Generic μ-kernel API from Jochen Liedtke

Methodology:

• Qualitativ or quantitativ analyses? → Qualitative analyses!

• LoC metric: find . -regex '.*\.\(c\|cc\)' -print0 | xargs -0 cat | wc -l

Analyses
Outline

Linux Kernel

Hardware

POSIX

Hardware
architecture

Module 1

Thread 1

Init Process N

Thread 2

Module M...

Process 1

Thread 1

Privileged
mode

Free multi-user UNIX for PC

Analyses
Linux

Analyses
Linux

Real-Time:

• POSIX RT extension: RT scheduling classes, locking pages to physical memory

• Any device driver may block the system

Partitioning:

• Space partitioning enforced by MMU above kernel

• User-Mode scheduling possible within a process

TCB:

• Monolithic kernel

• Kernel 2.6.9. for IA32 without drivers < 150.000 LoC

Modularity:

• Defined interface for device drivers

• Source code split in architecture and generic code

Open standards:

• POSIX is “quasi free”

Real-Time extensions for Linux:

• Patching:

➔ Reduced interrupt latency

➔ Less none-preemptible kernel code

➔ Some RT patches already included with kernel 2.6.18

➔ RT-distributions (selection): TimeSys, MontaVista

• Dual-Kernel:

➔ RTLinux

 Linux is an idle thread of the μ-kernel

 μ-kernel and Linux share kernel mode → no partitioning

 Software patent → not Open Source in a narrower sense

 Windriver announced on 20/02/07 that it bought all rights for RTLinux

(including the patent)

Analyses
Linux+RT

Linux Kernel

POSIX

Architecture
Code

Linux
Process

RT Kernel

Privileged
mode

Linux
Process

RT
Process

Module 1

RT
Process

Module M...

Analyses
Linux+RT

• Dual-Kernel:

➔ RTAI/Adeos

 Adeos I-Pipe is loaded as kernel module → no partitioning

 RT-tasks running in user- or kernel mode, co-scheduler for RT-asks

Dom 0 ... Dom N

Xen Virtual
Hardware

Hardware
architecture

Virtual
CPU

Virtual
Memory

Virtual
E/A

Hardware

Backend
Driver

Frontend
Driver

Control
Interface

Xen VMM

Event
ChannelsPrivileged

mode

Virtualised hardware for up to 100 guest OS [Barham+, 2003]

Analyses
Xen

Real-Time:

• EDF-Scheduler

• Split-Driver: Backend in Dom0, Frontend in guest OS

Partitioning:

• Performance isolation through virtualisation of memory, CPU, I/O, interrupts

• 2-stage scheduling: VMM scheduler on domain level and scheduler of guest OS

TCB:

• Hypervisor + Dom0

• xen-3.0.4_1-src/xen/arch/x86 < 60.000 LoC

Modularity:

• Logical separated VMM, Dom0 and guest OS

Open standards:

• Virtual hardware is subset of real hardware

• Xen management API

Analyses
Xen

Computer system following the „TV model“ [Herder+, 2006]

Minix 3 µKernel

Hardware

User
Process

1
...

User
Process

N

POSIX

System
calls

IA32

Clock System task

Server
(Process, Memory, FS, ...)

Device driver
(HD, NIC, ...)

Reincarnation
server

Privileged
Mode

Analyses
Minix 3

Real-Time:

• No RT-scheduler

• Memory management uses swapping

Partitioning:

• Address spaces protected by MMU

• Process-level scheduling

TCB:

μ-kernel + clock driver + system task + process- and memory manager

• src/kernel/*.c < 5.000 LoC (only IA32)

Modularity:

• Tight relations between μ-kernel and OS-services

• Servers and device drivers are isolated from μ-kernel

Open standards:

• POSIX

Analyses
Minix 3

L4 OS-layer

L4 µ-kernel

Hardware

OS API

L4 API

Hardware
architecture

S
ig

m
a0

R
oo

t-
ta

sk

Address space X

Thread 1 Thread N...

Address space Y

Thread 1

S
ig

m
a1

Privileged
mode

Hardware abstraction by address spaces, threads, IPC

Analyses
L4

Real-Time:

• RR-scheduler with 256 priorities

• Interrupts by IPC, handling in user mode

Partitioning:

• Address spaces protected by MMU

• Timeslice donation enables scheduling within address spaces

TCB:

• μKernel, Sigma0, Root-task

• L4Ka::Pistachio for IA32 < 15.000 LoC

Modularity:

• Isolation of μ-kernel and user mode servers/device drivers

• L4Ka::Pistachio and successors separate API / architecture / platform

Open standards:

• Kernel API with different versions: V2, X.0, X.2, N1

• OS API depends on OS-layer

Analyses
L4

None-IMA factors:

• Availability for PowerPC 750: Linux, L4

• Roadmap of L4 projects:

➔ NICTA: seL4, L4.verified (mathematical verified correctness)

➔ TU Dresden: Verified Fiasco

Analyses
Decision

Rating:

• Linux: Big TCB (-), no hard real-time (-)

• Linux+RT: Increased complexity (-)

• Xen: Clean partitioning (+), small TCB (+), no hardware abstraction (-)

• Minix 3: No real-time (-), small TCB (+), no kernel API (-)

• L4: Hard real-time [Ruocco, 2006] (+), hardware abstraction (+), defined

kernel API (+)

Name API Project Architectures
Pistachio X.2 L4Ka IA32/64, ARM, PowerPC32/64, ...

Pistachio-embedded N1 NICTA IA32, ARM, MIPS
OKL4 OKL4 OKL IA32, ARM
Fiasco V2/X.0 DROPS IA32

Name Precondition
Afterburner Pistachio + GCC-Afterburner

Wombat Pistachio-embedded + ESF
L4Linux Fiasco + L4Env

User Mode Linux Linux

Linux on L4:

L4 μKernel:

Implementation
Alternatives

Iguana

NICTA::Pistachio-embedded

Hardware

Iguana API

N1 API

Architecture
+ Platform

S
ig

m
a0

S
er

ve
r

Address space X

Thread 1 Thread N

Address space Y

Thread 1

Interrupts Timer

IPC FPages

MMU

SchedulingThreads

Embedded Systems Framework (ESF)

Implementation
ESF-Modell

CPU details:

• Decremeter works with (bus frequency)/4

• Separated Memory Mangement Unit (MMU) for Data and Instructions

• 4 Block Address Translations per MMU

• Segmented paging using 4 KB pages

• TLB with 128 entries per MMU

Board details (relevant parts):

• PowerPC 750 Cxe @ 600 MHz

• 128 MB SD-RAM

• 16 MB boot flash

• 100 MHz bus frequency

• Hostbridge Marvell GT-6426x

Implementation
Hardware

Hardware support for IMA-criterias:

• Real-Time:

➔ Decrementer interrupt with 0.04 μs (4/Bus-frequency) resolution

• Partitioning:

➔ Time:

 Decremeter enables scheduling with variable time slices

 Devices of inactive partitions could be masked on the interrupt

controller of the hostbridge

➔ Space:

 2 CPU Modes: User Model and Supervisor Model

 MMU for data and instructions / with BAT or Paging

 MMU also protects devices because of memory mapped I/O

• Modularity: 3 level architecture of processor

• TCB: n/a

Implementation
Hardware + IMA

Define
requirements

L4Ka::Pistachio

Wombat Linux
of NICTA

L4Ka::Pistachio
on EADS-Board

GCC 3.4.6.
Cross-ToolchainAdjust

PowerPC
ABI to

N1 API

Select kernel

Create
toolchain

Create
platform

Select Linux

ESF* auf
EADS-Board

Pistachio-embedded
on EADS Board

Implement PowerPC
architecture for ESF*

*) ESF = Embedded Systems Framework of National ICT Australia

Linux on
EADS-Board

Implement
PowerPC

sub-architecture

Implementation
Steps

Implementation
Steps

1.Cross-Toolchain:

● Host Plattform: IA32/Linux → Target Platform: PowerPC32/Elf

2.Build-System:

● Integrate PowerPC architecture and board in SCons

● Add PowerPC support to Dite (Tool for merging ELF-Images)

3.Architecture:

● Reorganise kernel startup code: OpenFirmware, KMem, sequence

● N1: no more Local Thread IDs / new User Thread Control Block (UTCB)

● Adjust ABI of 4 system calls to N1 API

● Implement new functions of Kernel Debugger

4.Platform:

● Boot-code of ELF-loader and kernel

● Interrupt handling

● Linker script

● Implement getc() and putc() for Marvell debug I/O

Evaluation
Results

Results:

• Pistachio-embedded supports PowerPC

• ESF supports PowerPC

• ESF is running on Hellas-board

5.ESF:

● libc: Data types, jump functions, CRT0, platform I/O

● libcycles: Read cycle counter of CPU

● libiguana: Implement CRT0 for threads

● libl4: Adjust to N1 ABI and UTCB, new KDebug functions

● libmutex: Implement try_lock

● drv_powerpc_timer: Decrementer based user mode timer

Evaluation
IMA

Real-Time:

• L4Ka::Pistachio(-embedded) using static time slices of length: 1953 μs

• Interrupts are disabled inside the kernel

Partitioning:

• System call MemoryControl was not implemented → Caching of pages can't

be prohibited → BAT-entry for Marvell-Bridge registers needed → World-

writeable

• Incrementing Pagefaults don't work (bug in TLB-handling?) → Pager always

assigns RW access

TCB:

• Known bugs in μ-kernel:

➔ MemoryControl system call goes wild

➔ Smashthread Unit Test fails: kernel is running out of memory for “Thread

Control Block” after creating around 20 threads → memory leak?

➔ Missing in TLB-update → bug in paging system for PowerPC

• Iguana needed many bug fixes an work-arounds before running → more bugs

suspected

Modularity: Nothing changed to Analyses

Evaluation
IMA

Open standars: Nothing changed to Analyses

Conclusion:

• Development stadium “Alpha”. Can't be used in IMA, yet!

• PowerPC code needs revision

• Good approach, bad implementation

Evaluation
Conclusion

Thanks for your attention!

Actual development:

• Open Kernel Labs published OKL4 with BSD licence

• Minix 3 was ported to PowerPC by [Alting, 2006]

• Xen was ported to PowerPC 970 by IBM

Bibliography

• [Alting, 2006]: I. A. Alting: „MinixPPC: A port of the MINIX OS to the

PowerPC platform”. Amsterdam. 2006

• [Barham+, 2003]: P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, A. Warfield: „Xen and the Art of Virtualization“.

New York. 2003

• [Benett, 2003]: M. D. Benett: „A Kernel For IMA Systems“. York. 2003

• [heise, 2003]: heise online: „Embedded-Spezialist Wind River tritt Open-

Source-Labs bei“. 2003

• [heise, 2006]: heise online: „Der Pinguin geht auf U-Boot-Jagd“. 2006

• [Herder+, 2006]: J. N. Herder, H. Bos, B. Gras, P. Homburg, A. S.

Tanenbaum: „MINIX 3: A Highly Reliable, Self-Repairing Operating System.

Amsterdam. 2006

• [Liedtke, 1995]: J. Liedtke: „On μ-Kernel Construction“. New York. 1995

Bibliography

• [Ruocco, 2006]: S. Ruocco: „Real-Time Programming and L4 Microkernels“.

Sydney. 2006

• [Rushby, 1999]: J. Rushby: „Partitioning in Avionics Architectures:

Requirements, Mechansims, and Assurance“. Menlo Park. 1999

• [Timmerman+, 2005]: M. Timmerman, L. Pernell: „RTOS State Of The Art -

Understanding RTOS Technology And Markets?”. 2005

